Mastère professionnel en Optimisation et Modernisation des Entreprises MOME

Présenté par
Guerfali Mohamed Hakim

Pour l’obtention du
Diplôme de mastère professionnel

Réduction taux de défauts et valeur rebut de la zone préparation S/E PCB équipé FORD

(chantier Six Sigma)

Réalisé à :
Casco Automotive Tunisia

Encadreur Casco Automotive : Mme Amira Dhaouadi
Encadreur UVT : Mr Elyes ELEBRI

Année Universitaire : 2018/2019
Remerciements

Je tiens d’abord à remercier Monsieur le Directeur Général de Casco Automotive Tunisia Mr. Jean Philippe Lecollier de m’avoir accordé l’opportunité de réaliser ce projet de fin d’études au sein de cette honorable société.

J’exprime encore toute ma profonde gratitude à mes encadreurs Mme. Dhaouadi Amira et Mr. Elyes ELEBRI qui m’ont encadré avec patience durant la réalisation de ce travail de fin d’étude.

Mes remerciements vont conjointement à ma femme Rabeb Ghanem pour son soutien qui m’a permis de mener à bien ce projet.

Toute ma reconnaissance à toute l’équipe de Casco Tunisie.

Le projet n’aurait probablement pas pu être abouti sans leur collaboration et leur aide précieux qui m’ont permis d’accomplir ce travail dans les meilleures conditions.

Enfin, je tiens à témoigner ma gratitude à toute personne qui m’a aidé de près ou de loin à réaliser ce travail.
Résumé

L’automobile s’améliore à un rythme très élevé. En fait, l’évolution technologique de l’informatique a mis les constructeurs face à une compétitivité acharnée.
Suite à cette situation, les sociétés doivent chercher les meilleures démarches à suivre pour atteindre le niveau de concurrence recherché.
Dans cet objet, l’amélioration continue est la solution optimale pour réussir l’activité vu qu’elle élimine tous les défauts qui peuvent insatisfaire le client.
Pour cette raison, l’entreprise Casco Automotive Tunisia a implémenté la démarche Six Sigma afin d’éradiquer les problèmes et les défauts et gagner la satisfaction des clients.

Abstract

The automobile industry is improving at a very fast pace. In fact, the technological evolution of IT has put manufacturers face fierce competitiveness.
As a result, companies must look for the best steps to achieve the desired level of competition.
In this object, continuous improvement is the optimal solution to succeed in the business since it eliminates all the defects that can dissatisfy the customer.
For this reason, Casco Automotive Tunisia has implemented the Six Sigma approach to eradicate problems and defects and win customer satisfaction.
Table des matières

Introduction générale... 1
Chapitre 1 : Contexte du Projet & Présentation de l’entreprise ... 2
Introduction ... 3
1.1. Contexte du Projet .. 3
1.1.1. Objectif du projet ... 3
1.1.2. Problématique... 4
1.2. Le groupe Casco Automotive.. 6
1.2.1. Historique ... 6
1.2.2. Secteur d’activité ... 6
1.2.3. Casco Tunisie ... 8
1.2.3.1. Organigramme de Casco Tunisie ... 8
1.2.3.2. Mission générale de chaque structure de Casco Tunisie .. 9
1.2.4. Processus de production... 9
1.2.4.1. L’import .. 10
1.2.4.2. Sérigraphie .. 10
1.2.4.3. Etuvage ... 11
1.2.4.4. Pliage ... 11
1.2.4.5. Pick & Place ... 12
1.2.4.6. Four de soudure .. 12
1.2.4.7. Découpage PCB ... 12
1.2.4.8. Assemblage & Test électrique ... 13
Conclusion ... 13
Chapitre 2 : Présentation de la méthodologie Six Sigma et application à Casco................. 14
Introduction .. 15
2.1. La méthodologie Six Sigma ... 15
2.1.1. La démarche de la méthodologie Six Sigma... 15
2.1.1.1 Définir .. 15
2.1.1.2 Mesurer .. 15
2.1.1.3 Analyser .. 15
2.1.1.4 Améliorer .. 15
2.1.1.5 Contrôler ... 16
2.2. Phase définition ... 16
2.2.1. Description du processus ... 16
2.2.2. SIPOC ... 17
2.2.3. Critical To Quality et indicateurs ... 17
2.3. Phase Mesure .. 18
2.3.1. Système de mesure ... 18
2.3.1.1. Enregistrement des données ... 18
2.3.1.2. Validation de collecte des données ... 18
2.3.1.3. Collecte des données ... 19
2.3.1.4. Saisie des données ... 20
2.3.1.4.1. Menu de saisie ... 20
2.3.1.4.2. Les fenêtres d’analyses .. 20
2.3.2. IPPM (Internal Part Per Million) .. 23
2.3.3. PPM (Part Per Million) .. 23
2.3.4. Diagramme Pareto .. 23
2.3.5. Quality Function Deployment ... 23
2.3.6. Etat de lieu ... 24
Conclusion... 26
2.4. Phase Analyse et Amélioration ... 27
2.4.1. Etudes du défaut PCB avec bavure ... 27
2.4.1.1. Défaut PCB avec bavure par équipe ... 27
2.4.1.2. Défaut PCB avec bavure par famille ... 28
2.4.1.3. Analyse approfondie de PCB avec bavure ... 28
2.4.1.4. Vérification des causes potentielles .. 30
2.4.1.5. Plan d’action .. 32
2.4.2. Etudes du défaut PCB avec cuivre ... 34
2.4.3. Etude du défaut LF déformé ... 34
2.4.3.1. Défaut LF déformé par équipe .. 34
2.4.3.2. Défaut LF déformé par référence .. 35
2.4.3.3. Analyse approfondie de LF déformé dans découpage manuel 36
2.4.3.4. Vérification des causes potentielles .. 38
2.4.3.5. Plan d’action .. 40
2.5. Phase Contrôle ... 42
2.5.3. Suivi étendu des défauts durant S01 à S20 .. 43
2.5.4. Tendance positive du problème PCB avec bavure ... 43
2.5.5. Tendance positive du problème LF déformé ... 43
2.5.6. IPPM ligne général ... 44
2.5.7. IPPM Unité Autonome de Production ... 44
2.5.8. Valeur rebut améliorée ... 45
2.6. Phase de contrôle .. 46
Conclusion .. 46
Conclusion générale ... 47
Références bibliographiques ... 48
Annexes .. 49
Liste des figures

Figure 1.1 : QQOQCP de définition du problème..4
Figure 1.2 : Les sites Casco Automotive dans le monde...5
Figure 1.3 : Histoire de Casco Automotive...6
Figure 1.4 : Organigramme de Casco Tunisie..8
Figure 1.5 : Organigramme processus de production..10
Figure 1.6 : Machine sérigraphie...10
Figure 1.7 : Lead Frame ...11
Figure 1.8 : Etuvage ..11
Figure 1.9 : Opération de pliage ...11
Figure 1.10 : Postes de Pick & Place ..12
Figure 1.11 : Machine de découpage..12
Figure 1.12 : Poste d’assemblage ...13
Figure 1.13 : Poste test électrique ..13
Figure 2.1 : Diagramme SIPOC pour le processus de production ...17
Figure 2.2 : Menu de saisie ...20
Figure 2.3 : IPPM & nombre de défauts ...21
Figure 2.4 : Résumé nombre de défauts & IPPM pour analyse ..21
Figure 2.5 : IPPM par ligne ..22
Figure 2.6 : Matrice QFD du capteur lumière FORD ..24
Figure 2.7 : Résultat IPPM durant S01 à S10 : 2019 ...24
Figure 2.8 : Scrap cost durant S01 à S10 : 2019 ..25
Figure 2.9 : IPPM Singulation par semaine ...25
Figure 2.10 : Pareto de défauts durant S01 à S10 : 2019 ...26
Figure 2.11 : Pourcentage défauts par équipe ...27
Figure 2.12 : Diagramme Ishikawa (PCB avec bavure) ..29
Figure 2.13 : Défaut PCB avec bavure ..34
Figure 2.14 : Défaut PCB avec cuivre ..34
Figure 2.15 : Pourcentage des LF déformé par équipe ...35
Figure 2.16 : Diagramme Ishikawa (découpage manuel) ..37
Figure 2.17 : IPPM par défaut PCB avec bavure ..43
Figure 2.18 : IPPM par défaut LF déformé ... 43
Figure 2.19 : IPPM ligne général ... 44
Figure 2.20 : IPPM Unité Autonome de Production .. 44
Figure 2.21 : Scrap cost du S01 à S20 ... 45
Liste des tableaux

Tableau 2.1 : Tableau des CTQ... 17
Tableau 2.2 : Nb des défauts par équipe et par semaine ... 27
Tableau 2.3 : Répartition par familles.. 28
Tableau 2.4 : Plan d’action.. 33
Tableau 2.5 : Nb des défauts par équipe et par semaine ... 34
Tableau 2.6 : Répartition par familles.. 35
Tableau 2.7 : Plan d’action LF déformé dans découpage manuel... 41
Tableau 2.8 : Suivi global des défauts de S01 à S20.. 42
Tableau 2.9 : Plan d’action de la phase de contrôle ... 46
Liste des Abréviations

- **DMAAC**: Définir, **M**esurer, **A**nalysier, **A**méliorer et **C**ontrôler. DMAAC est une méthode que l'on peut considérer comme un processus d'amélioration continue à part entière. Elle vise l'élimination systématique de toutes les sources de non qualité.

- **PCB**: Printed Circuit Board, PCB est un ensemble de composants électroniques et circuits qui assurent l'ensemble de fonctions.

- **S/E**: sous ensemble

- **LF**: lead frame : c'est le composant électronique responsable de la réaction du capteur avec la lumière.

- **PF**: produit fini

- **T°**: température

- **TRS**: taux de rendement synthétique

- **QRQC**: Quick Response Quality Control : c'est méthode de résolution des problèmes de qualité.

- **ZAP**: zone autonome de production

- **APU**: Autonomous production unit

- **PDCA**: Plan Do Check Act : c'est le socle principal de la démarche d'amélioration continu
Introduction générale

Au vu de l’évolution de l’environnement économique, les enjeux de l’industrie automobile sont multiples citant la technologie adoptée et l’énergie utilisée. Les évolutions dans la perception du produit automobile ainsi que dans ces tenants énergétiques se font en marge d’une concurrence accrue entre les différents acteurs du marché d’où le rôle primordiale du maîtrise des coûts et la différence de la qualité du produit qui joue un différentiel dans cette concurrence.

Dans la stratégie d’améliorer son système de développement, la société CASCO Automotive Tunisia a intégré le Six Sigma en tant que politique d’amélioration continue afin de satisfaire les besoins clients.

C’est dans ce contexte qui s’inscrit notre sujet qui porte sur la réduction du taux de défauts et valeur rebut de la zone préparation S/E PCB équipé FORD.

Des efforts ont été faits à ce propos et ci-dessous les avancements :

- Des formations sur le Six Sigma et ses outils.
- Réalisation de chantier Six Sigma.
- Application démarche Six Sigma (DMAAC).
- Mise en place un plan d’action.

L’aboutissement de notre sujet va nous permettre d’acquérir un savoir-faire et maîtriser les causes racines de chaque défaut.

Le projet contient deux chapitres comme suit :

Dans le premier chapitre nous présentons l’entreprise, ses différentes activités, ses produits et le processus de production.

Dans le deuxième chapitre nous abordons la notion de la méthodologie Six Sigma et son application sur notre cas à Casco.
Chapitre 1 : Contexte du Projet & Présentation de l’entreprise
Introduction

Au cours de ce chapitre nous allons présenter le contexte du projet, le groupe Casco Automotive dans le monde, ses pôles de production ainsi que l’entreprise d’accueil Casco Tunisie tout en mentionnant son historique, l’organisation de sa direction, l’activité principale du site ainsi que le processus de la production.

1.1. Contexte du Projet :

Ce projet de fin d’étude est un lancement d’un chantier de réduction IPPM/Scrap des lignes principales : des réunions, des analyses et un plan d’action à mettre en place.

1.1.1. Objectif du projet :

Ce projet comprend la zone préparation S/E PCB équipé du client Ford.

Le processus de préparation peut générer plusieurs défauts dont sont : Lead Frame mal inséré, Lead Frame violet, Lead Frame déformé, PCB avec cuivre, PCB avec bavure,…

Les défauts sont très variés et ils sont dus à plusieurs sources : opératrices et machines.

Les défauts qui sont passés seront détectés au dernier poste test électrique grâce au moyen de contrôle et les PokaYoké qui sont installés car ces défauts causeront des arrêts, des perturbations sur les lignes de production et engendrent des coûts élevés des produits finis fabriqués puis rebutés.

On doit donc améliorer le processus de préparation afin d’obtenir un produit conforme du premier coût pour réduire les coûts de non-qualité.

Il faut donc réduire au maximum les défauts, réagir plus rapidement vis-à-vis de toute dérive du processus nous permettra de minimiser les coûts et augmenter la productivité.

La criticité de ce défaut reste principalement dans le fait que sa détection est électrique d’une part et d’autre part le coût élevé du produits rebutés (PCB+LF). C’est pour cela qu’il faudrait avant tout dissocier les typologies des défauts, établir les origines et les causes racines.

Le but de ce projet est de réduire le taux des défauts et scrap de la ligne de préparation S/E PCB en apportant des actions efficaces suite à des causes racines potentielles.
1.1.2. Problématique:

Afin de répondre à cette question et dégager une problématique, un QQOQCP a été réalisé, voir figure 1.1. Cet outil permet de cibler un problème, ses acteurs, ainsi que ses effets.

Donnée d’entrée : IPPM & *Scrap élevés*

- Les 3 équipes de la zone de préparation S/E PCB équipé FORD
- Taux de défauts et valeur de *scrap élevés*
- Zone de préparation S/E PCB équipé FORD
- Du S1 jusqu’à S17
- IPPM est supérieur à l’objectif (2800 IPPM)
- Valeur de *scrap supérieur* à l’objectif (*500 Dt / semaine*)
- Le Processus n’est pas sous contrôle

Donnée de sortie : IPPM & *Scrap Optimisé*

Figure 1.1: QQOQCP de définition du problème
1.2. Le groupe Casco Automotive :

Casco Automotive Group Inc. est fondé en 1921, elle fournit des produits de connectivité de données techniques, d'alimentation, de charge et de capteurs. Le siège de la société est situé à Bridgeport, USA. Au 30 septembre 2014, Casco Automotive Group Inc. était une filiale d'Amphenol Corporation qui est l'un des plus grands concepteurs et fabricants au monde de connecteurs électriques, électroniques et de fibres optiques, de systèmes d’interconnexion, d'antennes, de capteurs et de câbles spécialisés haute vitesse. Dans la figure 1.2 on voit les sites de Casco dans le monde.

![Manufacturing and Logistics Locations](image)

Figure 1.2: Les sites Casco Automotive dans le monde
1.2.1. Historique :

On trouve dans la figure 1.3 ci-dessous l’histoire simplifiée de Casco Automotive :

1.2.2. Secteur d’activité :

Casco Automotive groupe a été développé entre 1995 et 2014 , et ci-dessous les différents activités :

- Connectivité
- Capteurs
- Prises de courant
- Connectivité

Premier fournisseur de produits de connectivité OEM, notamment des concentrateurs multimédias, des ports USB et des chargeurs intelligents. Principal fournisseur de produits de connectivité aux équipementiers Un grand focus sur l’innovation pour les futures plateformes et produits.
Capteurs

Produit des capteurs pour les applications de confort, de commodité et de sécurité
À la pointe de la prochaine génération de solutions intégrées telles que les capteurs combinés
Les produits incluent : capteur de température ambiante dans la voiture, capteur de lumière ambiante, capteur de distance inductif, capteur de pluie / lumière, capteur d’humidité relative et capteurs de charge solaire

Prises de courant

Premier fournisseur mondial de points de vente du secteur automobile, avec une part de marché mondiale de 46% .
Capacités logistiques avancées, expédiant plus de 150 000 composants entièrement assemblés par jour.
Nombreuses références avec adaptation et finition sur mesure pour chaque application
1.2.3. Casco Tunisie :

Date de fondation: décembre 2001
Date de début de fabrication: septembre 2002
Forme juridique: S.A.R.L
Portée: Fabrication de capteurs de charge solaire et électromécaniques, composants pour l'industrie automobile.
Lieu: Zone industrielle de Menzel Bourguiba
Principaux clients: sociétés GM / OPEL, BMW, VW, FORD et autres Casco
Chiffre d’affaires: 27 M $
Effectif direct: 340
Effectif indirect: 64
Surface du bâtiment: 3260 m²
Certifications / Qualifications: Actuel: ISOTS 16949 / ISO14001 / FORD Q1 / IATF 16949

1.2.3.1. Organigramme de Casco Tunisie :

L’organigramme de Casco Tunisie est présenté dans la figure 1.4 ci-dessous :

![Organigramme de Casco Tunisie](image)

Figure 1.4 : Organigramme de Casco Tunisie
1.2.3.2. *Mission générale de chaque structure de Casco Tunisie* :

- **Ressources humaines** :

Ce département a pour rôle le recrutement, l’intégration, la formation et le développement des carrières du personnel.

- **Qualité** :

Cette unité a pour rôle :

- Veille à l’application du système qualité de l’usine .
- Etablir et faire la diffusion des rapports de résultats mensuels de la qualité
- Réduire les coûts qualité.
- Supervision : Audit, réception qualitative, gestion de la qualité interne et externe.

- **Engineering** :

Il a pour rôle principal l’élaboration des méthodes de production et la mise en place des procédures d’études et de fabrication.

- **Production** :

Il produit suivant les instructions méthode et qualité, les quantités planifiées par la logistique .

- **Finance** :

Il dispose les ressources financière et les gère de la manière la plus rentable, il sert à réduire le coût et le gaspillage à tous les niveaux de l’entreprise.

- **Logistique** :

Il s’approvisionne en matière première nécessaire pour la production, planifie et assure la livraison suivant les besoins du client.

1.2.4. *Processus de production* :

Un capteur de lumière, le produit fini de Casco Tunisie, passe par différentes étapes de fabrication depuis la phase de matière sous forme de PCB, Lead frame et connecteurs vers l’expédition à un client, ses différentes phases sont illustrées dans la figure 1.5 suivante :
1.2.4.1. **L’import :**

Il s’agit de l’envoi des commandes aux fournisseurs et leurs réceptions physiquement.

1.2.4.2. **Sérigraphie :**

Il s’agit de l’opération de passage crème sur les flans PCB dans des zones bien spécifiques et avec une hauteur bien déterminée (toujours dépend des exigences clients), ci-dessous figure 1.6 de cette machine.
1.2.4.3. *Etuvage* :

Il s’agit de mettre cette matière première qui réagit à la lumière (lead frame, voir figure 1.7 et Annexe 4) dans le four (voir figure 1.8) durant 8h à 120°, et ça afin de dégager son humidité car la lead frame est un composant très fragile et prend rapidement l’humidité.

![Figure 1.7 : Lead Frame](image1.jpg)

![Figure 1.8 : Etuvage](image2.jpg)

1.2.4.4. *Pliage* :

Il s’agit de plier les pattes du lead frame selon la référence des trous du PCB à monter dedans autrement dit selon le produit fini associé, voir ci-dessous la figure 1.9 des machines de pliage.

![Figure 1.9 : Opération de Pliage](image3.jpg)
1.2.4.5. Pick & Place :

Dans cette opération (figure 1.10), les opératrices place les LF dans les troues des PCB selon la référence du PF associé.

`Figure 1.10 : Postes de Pick & Place`

1.2.4.6. Four de soudure :

Dans cette opération, la crème devient étain à une température élevé (T° selon type de crème) et tient les pattes du lead frame avec le circuit du PCB.

1.2.4.7. Découpage PCB :

Dans cette opération (figure 1.11), on découpe le flan en des petits PCB afin de les préparer à l’assemblage capteur.

`Figure 1.11 : machine de découpage`
1.2.4.8. Assemblage & Test électrique :

Dans cette opération le S/E PCB équipé s’assemble avec les restes des matières (Housing interne, Housing externe, couvercle) à l’aide d’une presse manuelle pour avoir le capteur lumière (figure 1.12) puis le capteur passe au testeur (figure 1.13) pour voir sa réaction avec la lumière.

Figure 1.12 : poste d’assemblage
Figure 1.13 : poste test électrique

Conclusion :

Le chapitre suivant présente le contexte général de ce projet de fin d’étude qui s’insère dans le cadre d’amélioration continue dans CASCO Tunisie afin de maîtriser les objectifs PPM et scrap.
Chapitre 2 :
Présentation de la méthodologie Six Sigma
Et Application à Casco
Introduction :

Dans ce chapitre nous abordons la notion du Six Sigma, nous commençons par définir cette démarche rapidement en donnant un aperçu sur son historique puis nous passons par la suite à l’application de la démarche DMAAC.

2.1. La méthodologie Six Sigma :

Le Six Sigma est une méthode d’amélioration continue qui est apparu avec les grandes industries américaines fin des années 1980. MOTOROLA était le découvreur et a réalisé un saving de 2 M$ dans 4 ans. Cette démarche commence aujourd’hui à s’ouvrir dans l’industrie européenne.

2.1.1. La démarche de la méthodologie Six Sigma :

La démarche Six Sigma se fait selon les étapes suivantes (DMAAC) :

2.1.1.1 Définir :

Dans cette étape, on pose le problème, puis on identifie sur quels produits se trouvent les défauts. Par la suite, il s’agit de sélectionner avec précision les défauts mesurables, en limitant le champ de travail en fixant les objectifs.

2.1.1.2 Mesurer :

Il s’agit de collecter les informations disponibles à propos de la situation courante. Ces données collectées seront rassemblées et catégorisées.

2.1.1.3. Analyser :

Suite à l’étape de mesure, il s’agit d’étudier l’importance des défauts, rechercher les causes probables de ces derniers, mettre des hypothèses et faire des analyses quantitatives des données grâce à des outils mathématiques et statistiques.

2.1.1.4. Améliorer :

La phase de l’amélioration consiste à rechercher, proposer et faire appliquer des solutions adaptées pour chaque situation. Il s’agit de trouver une ou plusieurs solutions appropriées pour chacune des causes des défauts.
2.1.1.5. Contrôler :

Une fois que l’entreprise a mis en place les solutions dégagées, il ne reste qu’à suivre l’évolution de la nouvelle situation, analyser les résultats et mesurer l’efficacité de solutions appliquées.

2.2. Phase définition :

2.2.1. Description du processus :

Le processus à améliorer est le processus du découpage manuel / automatique qui est une ligne de production et qui est constitué de deux machines : manuelle et automatique.

- **Le découpage manuel :**

 Ce poste nécessite le guidage manuel de l’opératrice afin de suivre le chemin de découpe dans le flan du PCB et la mise de ce dernier dans son support, les références qui tournent dans cette machine :

 - VOLVO-FORD AM5T/AV1T
 - DG9T

- **Le découpage automatique :**

 L’opératrice dans ce poste n’a que mettre le flan dans son support et sélectionner le programme adéquat dans la machine, les références qui tournent dans cette machine :

 - Audi
 - Ford B299
 - Scania
 - IDS
 - Bently
 - Valeo
 - Volvo truck
 - C519
 - Jetta
 - Polo-VW-MQB
2.2.2 : SIPOC :

Le SIPOC : Supplier Input Process Output Customer, est un outil de travail intéressant pour définir les entrées et sorties du process en saisissant ses caractéristiques et ses disfonctionnements donc il donne une vision global du processus.
Une réunion d’équipe Logistique, Méthode, Production et Qualité a été élaboré pour ce cadre afin de définir les entrées et les sorties de notre process, et ci-dessous le résultat dans la figure 2.1 :

Figure 2.1 : Diagramme SIPOC pour le processus de production

2.2.3. Critical To Quality et indicateurs :

Les CTQ sont les spécifications critiques c'est-à-dire essentielles définies par le client. Elles permettent de définir le niveau précis de qualité exigé pour chaque attribut déterminant du produit ou du service, et ci-dessous son application (Tableau 2.1) pour notre ligne :

Tableau 2.1 : Tableau des CTQ
2.3 Phase Mesure :

Le but de cette étape est de collecter les informations et les données nécessaire pour se focaliser sur le problème à traiter, ainsi identifier les défauts majeurs à éliminer.

2.3.1. Système de mesure :

2.3.1.1. Enregistrement des données :

La méthode d’enregistrement des données est primordiale pour avoir des données fiables et efficaces.

Il se fait pratiquement lors de détections des défauts aux différents postes du processus.

Chaque défaut détecté est enregistré systématiquement par l’opérateur sur le formulaire d’enregistrement des défauts par référence et par matricule opérateur ou numéro de poste dédié.

2.3.1.2. Validation de collecte des données :

Dès l’atteinte du seuil d’alerte approprié, l’opératrice remplit la feuille d’enregistrement des défauts, alerte le chef d’équipe et la contrôleur qualité, et mets les défauts détectés au box rouge.

Chaque défaut dépassant le seuil d’alerte fait l’objet d’une ligne QRQC signé par le chef d’équipe et avec les actions prises, un suivi sur ce défaut est fait sur 5 équipes consécutives.

Il sera remonté en QRQC ZAP une fois ce défaut n’a pas été résolu définitivement durant 5 équipes consécutives (voir annexe 1).
2.3.1.3. Collecte des données :

Afin d’avoir des données, il faut avoir la liste des défauts pour obtenir un enregistrement clair.
Ci-après les défauts qualité dû au processus de découpage manuel/automatique :

LF cassé
LF déformé
LF levé
LF avec bavure
LF violet
LF blanc
LF jaunâtre
PCB avec bavure
PCB avec cuivre
PCB endommagé
Pb aspect soudure
Trou PCB sans cuivre
Pièce par terre
Essai Maint

Ces défauts sont mis dans un formulaire d’enregistrement, (voir annexe 2).
2.3.1.4. Saisie des données :

2.3.1.4.1. Menu de saisie :

Un fichier excel (figure 2.2) est élaboré par la direction afin de faciliter la saisie des données. Il permet aussi d'accéder à l'historique et l'imprimer. L'accès aux différentes lignes se fait en avancement les feuilles.

![Figure 2.2 : Menu de saisie](image)

2.3.1.4.2. Les fenêtres d'analyses :

Les éléments de sorties de ce fichier sont présentés par des niveaux. Le premier niveau est le site ensuite une interface est spécifique à la 1ère ZAP ensuite une autre interface pour la 2ème ZAP.

Pour ces niveaux d'interfaces un affichage standards est défini, seul les éléments à filtrer selon le choix sont à modifier. Dans cet affichage standard on trouve :

<table>
<thead>
<tr>
<th>APP</th>
<th>Ligne</th>
<th>MP</th>
<th>N°</th>
<th>JAN</th>
<th>DATE</th>
<th>TYPE</th>
<th>FM</th>
<th>DECLARATION</th>
<th>CUSTOMER</th>
<th>CODE</th>
<th>DEFECT FIELD</th>
<th>Dép.</th>
<th>QGR</th>
<th>COMMENT</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SINGULATION</td>
<td>NOL</td>
<td>5632</td>
<td>2023-12-01</td>
<td>TUR</td>
<td>6430</td>
<td>LE casse</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SINGULATION</td>
<td>NOL</td>
<td>5632</td>
<td>2023-12-01</td>
<td>TUR</td>
<td>6430</td>
<td>LE casse</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SINGULATION</td>
<td>NOL</td>
<td>5632</td>
<td>2023-12-01</td>
<td>TUR</td>
<td>6430</td>
<td>NEUR</td>
<td>77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>SINGULATION</td>
<td>NOL</td>
<td>5632</td>
<td>2023-12-01</td>
<td>TUR</td>
<td>6430</td>
<td>NEUR</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>SINGULATION</td>
<td>NOL</td>
<td>5632</td>
<td>2023-12-01</td>
<td>TUR</td>
<td>6430</td>
<td>NEUR</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>SINGULATION</td>
<td>NOL</td>
<td>5632</td>
<td>2023-12-01</td>
<td>TUR</td>
<td>6430</td>
<td>NEUR</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>SINGULATION</td>
<td>NOL</td>
<td>5632</td>
<td>2023-12-01</td>
<td>TUR</td>
<td>6430</td>
<td>NEUR</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>SINGULATION</td>
<td>NOL</td>
<td>5632</td>
<td>2023-12-01</td>
<td>TUR</td>
<td>6430</td>
<td>NEUR</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>SINGULATION</td>
<td>NOL</td>
<td>5632</td>
<td>2023-12-01</td>
<td>TUR</td>
<td>6430</td>
<td>NEUR</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>SINGULATION</td>
<td>NOL</td>
<td>5632</td>
<td>2023-12-01</td>
<td>TUR</td>
<td>6430</td>
<td>LE casse</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>SINGULATION</td>
<td>NOL</td>
<td>5632</td>
<td>2023-12-01</td>
<td>TUR</td>
<td>6430</td>
<td>LE casse</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>SINGULATION</td>
<td>NOL</td>
<td>5632</td>
<td>2023-12-01</td>
<td>TUR</td>
<td>6430</td>
<td>NEUR</td>
<td>196</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>SINGULATION</td>
<td>NOL</td>
<td>5632</td>
<td>2023-12-01</td>
<td>TUR</td>
<td>6430</td>
<td>NEUR</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>SINGULATION</td>
<td>NOL</td>
<td>5632</td>
<td>2023-12-01</td>
<td>TUR</td>
<td>6430</td>
<td>NEUR</td>
<td>74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>SINGULATION</td>
<td>NOL</td>
<td>5632</td>
<td>2023-12-01</td>
<td>TUR</td>
<td>6430</td>
<td>NEUR</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>SINGULATION</td>
<td>NOL</td>
<td>5632</td>
<td>2023-12-01</td>
<td>TUR</td>
<td>6430</td>
<td>NEUR</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>SINGULATION</td>
<td>NOL</td>
<td>5632</td>
<td>2023-12-01</td>
<td>TUR</td>
<td>6430</td>
<td>LE casse</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>SINGULATION</td>
<td>NOL</td>
<td>5632</td>
<td>2023-12-01</td>
<td>TUR</td>
<td>6430</td>
<td>LE casse</td>
<td>147</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>SINGULATION</td>
<td>NOL</td>
<td>5632</td>
<td>2023-12-01</td>
<td>TUR</td>
<td>6430</td>
<td>LE casse</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>SINGULATION</td>
<td>NOL</td>
<td>5632</td>
<td>2023-12-01</td>
<td>TUR</td>
<td>6430</td>
<td>NEUR</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>SINGULATION</td>
<td>NOL</td>
<td>5632</td>
<td>2023-12-01</td>
<td>TUR</td>
<td>6430</td>
<td>NEUR</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
le graphe de l’IPPM et nombre de défauts qui est généré sous forme d’histogramme par semaine ou mois (figure 2.3)

Figure 2.3 : IPPM & Nombre de défauts

le graphe de résumé nombre de défauts et IPPM pour analyse (figure 2.4) et cela par jour, semaine ou mois selon la période voulue.

Figure 2.4 : Résumé nombre de défauts & IPPM pour analyse
le graphe de IPPM par ligne et qui affiche tous les éléments correspondants à cette ligne et les classes par nombre de défauts ou par type de défauts (figure 2.5).

Un nombre d’analyses est généré par ce fichier afin d’avoir une meilleure vision sur les défauts générés par notre processus. Une vision globale de l’ensemble du site (puis divisé par zone) est présente et qui contient l’IPPM et le nombre des défauts par ligne et par désignation du défaut. Selon le cas (non atteinte des objectifs IPPM) une autre sélection des données est possible afin de plus avoir la vision sur les lignes / défauts pareto.

Toutes ces analyses peuvent être imprimées directement ou extraites en format Pdf.
2.3.2. IPPM (Internal Part Per Million):

Dans le secteur industriel, notamment dans le secteur automobile, l’IPPM est habituellement utilisée comme indicateur de mesure de performance qualité du processus. Il est mis sous le processus de production vu que la production doit produire au même temps la qualité et la quantité requises et c’est le système suivi dans le majeur des industries évoluées.

Il mesure le nombre de pièces non-conformes par millions de pièces produites. Il est calculé dans notre cas comme suit:

\[
\text{IPPM} = \frac{\text{Total défauts}}{\text{Total pièces produites}} \times 1000000
\]

2.3.3. PPM (Part Per Million):

La PPM client est un indicateur de suivi des résultats externe chez le client pour le suivi de l’évolution de niveau qualité de son fournisseur. Le PPM est l’abréviation de (Part per million), il est calculé comme suit:

\[
\text{PPM} = \frac{\text{Total pièces non conformes}}{\text{Total pièces livrés}} \times 1000000
\]

2.3.4. Diagramme Pareto :

Le digramme de Pareto est un outil très simple pour déterminer des priorités, orienter un plan d’action, focaliser les efforts sur les sujets les plus importants.

Les données sont présentées sous forme de colonnes correspondant aux différents types de défauts, classés par ordre décroissant.

2.3.5. Quality Function Deployment:

Le \textit{QFD} est une traduction des attentes du consommateur en spécifications internes à l’entreprise, et cela tout au long de la vie du produit, autrement dit dans la phase R&D, phase industrialisation / mise en place et phase de vente et livraison.

L’outil se présente sous la forme d’une matrice qu’on appelle souvent « maison de la qualité » (figure 2.6)
<table>
<thead>
<tr>
<th>Comment</th>
<th>Mode opératoire</th>
<th>Version Lead Frame</th>
<th>Aides visuelles</th>
<th>Contrôles électriques</th>
<th>Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>C</td>
<td>C</td>
<td>B</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Attentes</th>
<th>Valeur</th>
<th>Exigence Client</th>
<th>Conception capteur</th>
<th>Dimension capteur</th>
<th>Importances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fonctionnement capteur</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Aspect capteur</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesure</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intégrité composants</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Combien					
délai de production	1	1			2
prix de production	3	1	1		6
Evaluation	3	1			6

Figure 2.6 : matrice QFD du capteur lumière FORD

2.3.6. Etat de lieu :

L’étude de l’existant a été faite à partir de la synthèse des données des indicateurs de la qualité interne et ce durant la période allant de semaine 01 à la semaine 10 pour l’année 2019.

Selon les données, on présente dans la figure 2.7 le résultat d’IPPM par ligne et on remarque que la ligne « Singulation » contient le plus nombre de défauts.

On présente dans la figure 2.8 le résultat de Scrap cost.

Figure 2.7 : Résultat IPPM durant S01 à S10 :2019
On constate donc que le IPPM de la ligne SINGULATION est hors objectif qui est environ de 10570 IPPM, pour cela on se concentre sur cette ligne. La courbe ci-dessous nous montre la tendance d’IPPM durant la semaine 01 à la semaine 10 de l’année 2019. On observe que l’IPPM est nettement supérieur à l’objectif (figure 2.9)
Les résultats IPPM sont insuffisants pour visualiser les défauts, pour cela on a besoin du digramme de Pareto de défaut. Le Pareto (figure 2.10) nous donne une idée assez claire sur les types des défauts détectés dans les lignes SINGULATON.

Le fait de savoir les défauts sur lesquels on va se focaliser nous aide à axer les efforts sur les problèmes ou les causes prioritaires par une meilleur analyse selon les besoins de la direction.

![Diagramme de Pareto](image)

Figure 2.10: Pareto de défaut durant S01 à S10 :2019

D’après la règle de Pareto, nous remarquons que 80% des défauts sont focalisés sur PCB avec bavure, PCB avec cuivre & LF déformé donc si nous travaillons sur ces trois défauts on sera sûr qu’on a éradiqué la majorité des problèmes, le projet Six sigma concerne alors ces trois défauts.

Conclusion :

 Après avoir défini le système de mesure, l’enregistrement de nos données et l’état de l’existant, nous allons dégager les root-causes en passant par l’analyse des trois défauts les plus majeurs « PCB avec bavure, PCB avec cuivre & LF déformé ».

2.4. Phase analyse et amélioration :

2.4.1. Etude du défaut « PCB avec Bavure »:

Afin de mieux étudier et analyser le sujet nous avons décidé de suivre l’apparition du défaut et sa focalisation : par équipe ou par famille de produit.

2.4.1.1. Défaut « PCB avec bavure » par équipe :

Le tableau suivant (tableau 2.2) contient les nombres des défauts par équipe :

<table>
<thead>
<tr>
<th>Equipe</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
<th>S6</th>
<th>S7</th>
<th>S8</th>
<th>S9</th>
<th>S10</th>
<th>Somme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipe A</td>
<td>146</td>
<td>146</td>
<td>143</td>
<td>87</td>
<td>149</td>
<td>135</td>
<td>194</td>
<td>198</td>
<td>215</td>
<td>146</td>
<td>1559</td>
</tr>
<tr>
<td>Equipe B</td>
<td>149</td>
<td>139</td>
<td>134</td>
<td>90</td>
<td>135</td>
<td>130</td>
<td>190</td>
<td>198</td>
<td>203</td>
<td>135</td>
<td>1503</td>
</tr>
<tr>
<td>Equipe C</td>
<td>135</td>
<td>135</td>
<td>143</td>
<td>80</td>
<td>146</td>
<td>135</td>
<td>196</td>
<td>194</td>
<td>205</td>
<td>139</td>
<td>1508</td>
</tr>
<tr>
<td>Somme</td>
<td>430</td>
<td>420</td>
<td>420</td>
<td>257</td>
<td>430</td>
<td>400</td>
<td>580</td>
<td>590</td>
<td>623</td>
<td>420</td>
<td>4570</td>
</tr>
</tbody>
</table>

Tableau 2.2 : Nb des défauts par équipe et par semaine

Le graphe suivant (figure 2.11) présente le pourcentage d’IPPM «PCB avec bavure» qui ont été détecté pour chaque shift durant la semaine S01 jusqu’à la semaine S10.

Figure 2.11: Pourcentage défauts par équipe

On va focaliser notre étude sur la détermination des causes potentielles spécifiques par famille.
2.4.1.2. Défaut « PCB avec bavure » par famille :

On trouve ci-dessous (tableau 2.3) un suivi sur les nombres des PCB avec bavure par famille. Le défaut représente environ 96% de nombre total des défauts dans la famille des produits dont le process d’assemblage en externe (dont c’est le client qui monte le PCB avec les restes des composants).

<table>
<thead>
<tr>
<th>Familles du produit</th>
<th>Réf PF</th>
<th>Nombre de défauts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Famille avec process d’assemblage est en interne</td>
<td>Ford B299</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Scania</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>IDS</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Bently</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Valeo</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Volvo truck</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>C519</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Jetta</td>
<td>0</td>
</tr>
<tr>
<td>Famille avec process d’assemblage est en externe</td>
<td>Polo-VW-MQB</td>
<td>2550</td>
</tr>
<tr>
<td></td>
<td>Audi</td>
<td>2000</td>
</tr>
</tbody>
</table>

Tableau 2.3 : Répartition par familles

2.4.1.3. Analyse approfondie de « PCB avec Bavure » :

Il est parfois complexe de savoir les causes réelles et les causes potentielles d’un problème ou d’une anomalie majeure. Pour ce faire, il est intéressant de construire un diagramme causes-effet ou diagramme Ishikawa. On a utilisé ce type de diagramme vu qu’il nous permet de bien poser le problème en sachant les causes pouvant être à l’origine du problème.

La construction du diagramme d'Ishikawa est basée sur un travail de toute l’équipe. Il faut appliquer le brainstorming et trouver les causes possibles de problème rencontré. Le classement des causes se fait en 5 grandes familles, les " 5M " : Matières, Milieu, Méthodes, Moyen et Main d’œuvre.

Avec l’appui de toute l’équipe on a essayé de développer toutes les origines du défaut. Les résultats sont présentés ci-après, le diagramme d’Ishikawa (figure 2.12) montre les causes relatives au défaut PCB avec bavure.
Figure 2.12: Diagramme Ishikawa (PCB avec Bavure)
2.4.1.4. Vérification des causes potentielles :

En partant du diagramme cause –Effet on va appliquer les cinq pourquoi de chaque M.

Les « 5 Why » est une méthode de résolution de problèmes. Il s’agit de poser tant que possible la question « Why ? » jusqu’à arriver au step ou on ne peut plus poser cette question et aboutissement presque à la réponse de cette cause.

✓ Analyse de M1 (Manque formation) :

Pourquoi s’est-elle produite ?

P1 : Manque formation

P2 : Opérateur n’a pas pris son temps nécessaire de formation

P3 : Urgence de logistique ne laisse pas le temps à la production d’effectuer la formation

✓ Analyse de M2 (Programme machine non verrouillé) :

Pourquoi s’est-elle produite ?

P1 : Programme machine non verrouillé : possibilité de modifier les positions X, Y par la maintenance

P2 : Pas de session opérateur dans machine, travail sur la session admin

P3 : Machine reçu à l’état

✓ Analyse de M3 (Programme machine) :

Pourquoi s’est-elle produite ?

P1 : Programme machine : les positions X et Y sont décalées

P2 : Paramétrage incorrect de ces réf

P3 : Machine reçu à l’état

✓ Analyse de M4 (Dimension flan PCB non conforme) :

Pourquoi s’est-elle produite ?

P1 : Dimension flan PCB non conforme par rapport au plan (voir annexe 3)

P2 : Défaut fournisseur
✓ Analyse de M5 (Bague de positionnement plateau) :

Pourquoi s'est-elle produite ?
P1 : Bague de positionnement plateau
P2 : Bague de positionnement plateau dans barrette contient du jeu
P3 : Usure au niveau de la bague

✓ Analyse de M6 (Plateau de mise flan) :

Pourquoi s'est-elle produite ?
P1 : plateau de mise flan contient du jeu
P2 : conception goupille du plateau n’est pas efficace
P3 : plateau reçu à l’état

✓ Analyse de M7 (Barrette de positionnement plateau) :

Pourquoi s'est-elle produite ?
P1 : Barrette de positionnement plateau contient du jeu
P2 : Manque goupillage au niveau des deux barrettes
P3 : Machine reçu à l’état

✓ Analyse de M8 (Pression Machine) :

Pourquoi s'est-elle produite ?
P1 : Pression machine déréglée
P2 : Pression n’est pas stable
P3 : Panne compresseur Usine

✓ Analyse de M9 (Manque éclairage au poste) :

Pourquoi n'est-elle pas détectée ?
P1: Manque éclairage au poste
P2 : Critère n’est pas pris en compte lors de validation du poste
P3 : Pas de standard de validation du poste
P4 : Le plan de surveillance ne stipule la validation du poste.

✓ **Analyse de M10 (Contrôle visuel non respecté) :**

Pourquoi n'est-elle pas détectée ?
P1 : Contrôle visuel non respecté
P2 : Difficulté de contrôler à la fois 48 PCB découpé du flan
P3 : Conception produit à l'état

✓ **Analyse de M11 (Absence contrôle machine) :**

Pourquoi n’est-elle pas détectée ?
P1 : Absence contrôle machine
P2 : Pas de moyen pour détecter la qualité de coupe des flans
P3 : Cahier de charge machine ne contient pas cette détection
P4 : Machine reçu à l’état

2.4.1.5. **Plan d’action :**

Le tableau ci-dessous (tableau 2.4)présente les actions réalisées suite à ce chantier avec leurs responsables ainsi que leurs états d’avancements.
<table>
<thead>
<tr>
<th>Item</th>
<th>Date</th>
<th>Problem</th>
<th>Root Cause</th>
<th>Corrective Action</th>
<th>Resp</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>W12</td>
<td></td>
<td>Manque formation opératrices</td>
<td>Urgence de logistique ne laisse pas le temps à la production</td>
<td>Anticiper les augmentations de volume avant min 2 semaines</td>
<td>Slim W13</td>
<td>X X X</td>
</tr>
<tr>
<td>W12</td>
<td></td>
<td>Attente phase de contrôle de l'action</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W13</td>
<td></td>
<td>Programme machine non verrouillé</td>
<td>Machine reçue à l'état</td>
<td>Créer une autre session pour opérateur qui ne possède plus la main de modifier les X et Y du programme</td>
<td>Amine Blanco W16</td>
<td>X X X X</td>
</tr>
<tr>
<td>W13</td>
<td></td>
<td>Dimension flan PCB non conforme</td>
<td>Défaut fournisseur</td>
<td>Mesurer les dimensions du flan et alerter le fournisseur en cas de non-conformité</td>
<td>Rezgui Fawzia W13</td>
<td>X X X X</td>
</tr>
<tr>
<td>W12</td>
<td></td>
<td>Bague de positionnement plateau</td>
<td>Usure au niveau de la bague</td>
<td>Fabrication d'une nouvelle bague sur mesure</td>
<td>Bassem Hellal W14</td>
<td>X X X X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MAJ gamme MP2 afin d'ajouter la vérification de l'état d'usure de cette bague hebdomadairement</td>
<td>Bassem Hellal W14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W12</td>
<td></td>
<td></td>
<td></td>
<td>Emir Foucheli W16</td>
<td>X X X X</td>
<td></td>
</tr>
<tr>
<td>W13</td>
<td></td>
<td>Barrette de positionnement plateau</td>
<td>Machine reçue à l'état</td>
<td>Fabrication d'autres barrettes avec zero réglage</td>
<td>Bassem Hellal W16</td>
<td>X X X X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Goupillage nouvelles barrettes</td>
<td>Bassem Hellal W16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W12</td>
<td></td>
<td>Contrôle visuel non respecté</td>
<td>Conception produit à l'état</td>
<td>Mise en place d'un gabarit de contrôle au démarrage dimension PCB</td>
<td>Amine Blanco W13</td>
<td>X X X X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PCB avec bavure & PCB avec cuivre</td>
<td>Plateau de mise flan</td>
<td>W13</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 2.4: Plan d'action
2.4.2. Etude de défaut « PCB avec Cuivre » :

Le défaut de PCB avec cuivre est en fait identique en phase d’analyse au défaut PCB avec bavure sauf que dans le sens contraire, autrement dit le diagramme Ishikawa et le plan d’action sont les mêmes que le défaut précédent, voir ci-dessous les photos dans figure 2.13 et 2.14.

![Figure 2.13 : Défaut PCB avec bavure](image)

![Figure 2.14: Défaut PCB avec Cuivre](image)

2.4.3. Etude de défaut « LF déformé » :

Afin de mieux étudier et analyser le sujet nous avons décidé de suivre l’apparition du défaut et sa focalisation : par équipe ou par référence de produit.

Une information capitale pour ce cas, c’est qu’on est sur la machine de découpage manuel donc le facteur humain pour jouer un rôle important lors de notre analyse.

2.4.3.1. Défaut « LF déformé » par équipe :

Le tableau suivant (tableau 2.5) contient les nombres des défauts par équipe :

<table>
<thead>
<tr>
<th></th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
<th>S6</th>
<th>S7</th>
<th>S8</th>
<th>S9</th>
<th>S10</th>
<th>LF déformé</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipe A</td>
<td>57</td>
<td>48</td>
<td>55</td>
<td>58</td>
<td>51</td>
<td>52</td>
<td>87</td>
<td>83</td>
<td>74</td>
<td>71</td>
<td>636</td>
</tr>
<tr>
<td>Equipe B</td>
<td>38</td>
<td>50</td>
<td>70</td>
<td>69</td>
<td>59</td>
<td>68</td>
<td>58</td>
<td>60</td>
<td>76</td>
<td>60</td>
<td>608</td>
</tr>
<tr>
<td>Somme</td>
<td>95</td>
<td>98</td>
<td>125</td>
<td>127</td>
<td>110</td>
<td>120</td>
<td>145</td>
<td>143</td>
<td>150</td>
<td>131</td>
<td>1244</td>
</tr>
</tbody>
</table>

Tableau 2.5 : Nb des défauts par équipe et par semaine

Le graphe suivant (figure 2.15) présente le pourcentage d’IPPM « LF déformé » qui ont été détecté pour chaque équipe de travail du S01 à S10.
On va focaliser notre étude sur la détermination des causes potentielles spécifiques par référence.

2.4.3.2. Défaut « LF déformé » par référence:

On trouve ci-dessous (tableau 2.6) un suivi sur les nombres de LF déformé par référence.

<table>
<thead>
<tr>
<th>Réf PF</th>
<th>Nombre de défauts</th>
<th>Pourcentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLVO-FORD AM5T/AV1T</td>
<td>584</td>
<td>46%</td>
</tr>
<tr>
<td>DG9T</td>
<td>660</td>
<td>54%</td>
</tr>
</tbody>
</table>

Tableau 2.6: Répartition par familles

Toujours on est avec un pourcentage presque équitable cela nous pousse à attaquer le diagramme de cause-Effet pour les deux références qui tournent sur cette machine donc pour le découpage manuel en entier.
2.4.3.3. Analyse approfondie de « LF déformé dans Découpage manuel » :

Avec la contribution de toute l’équipe on a essayé de développer toutes les origines possibles du défaut sur la machine découpage manuel. Les résultats sont présentés ci-après, le diagramme d’Ishikawa (figure 2.16) montre les causes relatives au défaut LF déformé.
Figure 2.16: Diagramme Ishikawa (découpage manuel)
2.4.3.4. Vérification des causes potentielles :

En partant du diagramme cause –Effet on va appliquer les cinq pourquoi de chaque M.

✓ Analyse de M1 (Manipulation très accélérée) :

Pourquoi s'est-elle produite ?

P1 : Manipulation très accélérée
P2 : Process manuel et l’opératrice manque d’information de l’importance de cette manipulation
P3 : Manque de formation
P4 : Manque critère standard de formation

✓ Analyse de M2 (Vitesse de rotation fraise non verrouillée) :

Pourquoi s'est-elle produite ?

P1 : Vitesse de rotation fraise non verrouillée : possibilité de modifier la vitesse par la maintenance
P2 : Pas de protection sur le régulateur de vitesse
P3 : Machine reçue à l’état

✓ Analyse de M3 (Diamètre fraise erroné) :

Pourquoi s'est-elle produite ?

P1 : Diamètre fraise erroné
P2 : Pas de contrôle diamètre fraise
P3 : Absence standard contrôle diamètre fraise

✓ Analyse de M4 (Dimension flan PCB non conforme) :

Pourquoi s'est-elle produite ?

P1 : Dimension flan PCB non conforme
P2 : Défaut fournisseur
✓ Analyse de M5 (Fraise usée) :

Pourquoi s'est-elle produite ?
P1 : Fraise usée
P2 : Pas de nouvelle fraise disponible en stock pièce de rechange
P3 : Pas de stock de sécurité pièce de rechange
P4 : Pas de standard gestion pièce de rechange

✓ Analyse de M6 (Guidage plateau usé) :

Pourquoi s'est-elle produite ?
P1 : Guidage plateau usé
P2 : Matière conçue pour fabrication de ce guidage n’est pas dur
P3 : Point n’est pas pris en considération dans le standard machine
P4 : machine reçu à l’état

✓ Analyse de M7 (Pions des Plateaux cassés) :

Pourquoi s'est-elle produite ?
P1 : Pions des plateaux cassés : fixation plan impossible
P2 : Diamètre pions supérieur au trou du PCB
P3 : Point n’est pas traité lors de validation équipement
P4 : Absence standard de validation équipement

✓ Analyse de M8 (Goupille de guidage plateau usé) :

Pourquoi s'est-elle produite ?
P1 : Goupille de guidage plateau usé
P2 : Pas de fréquence de changement goupille bien définie
P3 : Absence vérification goupille dans l’MP2
✓ Analyse de M9 (Manque éclairage au poste) :

Pourquoi n'est-elle pas détectée ?
P1: Manque éclairage au poste
P2 : Critère n’est pas pris en compte lors de validation du poste
P3 : Pas de standard de validation du poste
P4 : Le plan de surveillance ne stipule pas la validation du poste.

✓ Analyse de M10 (Contrôle visuel non respecté) :

Pourquoi n'est-elle pas détectée ?
P1: Contrôle visuel non respecté
P2: Difficulté de contrôler à la fois 48 PCB découpé du flan
P3 : Conception produit à l’état

✓ Analyse de M11 (Absence contrôle machine) :

Pourquoi n’est-elle pas détectée ?
P1 : Absence contrôle machine
P2 : Pas de moyen pour détecter la qualité de coupe des flans
P3 : Cahier de charge machine ne contient pas cette détection
P4 : Machine reçu à l’état

2.4.3.5. Plan d’action :

Le tableau ci-dessous (tableau 2.7)présente les actions réalisées suite à ce chantier avec leurs responsables ainsi que leurs états d’avancements.
<table>
<thead>
<tr>
<th>Item</th>
<th>Date</th>
<th>Problème</th>
<th>ROOT CAUSE</th>
<th>CORRECTIVE ACTION</th>
<th>RESPONSABLE</th>
<th>DEADLINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>W12</td>
<td>12</td>
<td>Manipulation très accélérée</td>
<td>Manque critère standard de formation</td>
<td>Ajouter le critère de manipulation chariot machine dans la formation des opératrices</td>
<td>Mohamed Chemsi</td>
<td>X X X X</td>
</tr>
<tr>
<td>W12</td>
<td></td>
<td>Vitesse de rotation fraise non verrouillée</td>
<td>Machine reçu à l’état</td>
<td>Mise en place d’un cache à clé afin de verrouiller l’accès au régleur vitesse fraise</td>
<td>Hanen Riahi</td>
<td>X X X X</td>
</tr>
<tr>
<td>W13</td>
<td>13</td>
<td>Diamètre fraise erroné</td>
<td>Absence standard contrôle diamètre fraise</td>
<td>Mise en place d’un gage pour diamètre nozle avant production</td>
<td>Hanen Riahi</td>
<td>X X X X</td>
</tr>
<tr>
<td>W13</td>
<td>13</td>
<td>Dimension flan PCB non conforme</td>
<td>Défaut fournisseur</td>
<td>Mesurer les dimensions du flan et alerter le fournisseur en cas de non-conformité</td>
<td>Rezgui Fawzia</td>
<td>X X X X</td>
</tr>
<tr>
<td>W13</td>
<td>13</td>
<td>Fraise usée</td>
<td>Pas de standard gestion pièce de rechange</td>
<td>Mise en place d’un seuil minimum pour changement barrette fraises différents diamètres</td>
<td>Bassem Hellal</td>
<td>X X X X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mise en place d’un stock de sécurité pour les fraises</td>
<td></td>
<td></td>
<td>Bassem Hellal</td>
<td>X X X X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Généralisation du stock de sécurité pour toutes les pièces de rechange qui nécessite</td>
<td></td>
<td></td>
<td>Bassem Hellal</td>
<td>X X X X</td>
</tr>
<tr>
<td>W13</td>
<td>13</td>
<td>Guidage plateau usé</td>
<td>Machine reçu à l’état</td>
<td>Changement type de matière du guidage en acier traité</td>
<td>Bassem Hellal</td>
<td>X X X X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAJ Gamme MP2 afin de vérifier l’usure du guidage plateau dans machine</td>
<td></td>
<td></td>
<td>Bassem Hellal</td>
<td>X X X X</td>
</tr>
<tr>
<td>W12</td>
<td>12</td>
<td>Pions des Plateaux cassés</td>
<td>Absence standard de validation équipement</td>
<td>Changement pions avec le bon diamètre</td>
<td>Bassem Hellal</td>
<td>X X X X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mise en place d’un standard de validation outillage</td>
<td></td>
<td></td>
<td>Amira Dhaouadi</td>
<td>X X X X</td>
</tr>
<tr>
<td>W13</td>
<td>13</td>
<td>Goupille de guidage plateau usé</td>
<td>Absence vérification goupille dans l’MP2</td>
<td>Changement goupille avec le bon diamètre</td>
<td>Bassem Hellal</td>
<td>X X X X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAJ gamme MP2 afin de vérifier l’usure du goupille de guidage plateau</td>
<td></td>
<td></td>
<td>Bassem Hellal</td>
<td>X X X X</td>
</tr>
<tr>
<td>W12</td>
<td>12</td>
<td>Contrôle visuel non respecté</td>
<td>Conception produit à l’état</td>
<td>Mise en place d’un gabarit de contrôle au démarrage dimension PCBAmine Blanco</td>
<td>W13</td>
<td>X X X X</td>
</tr>
</tbody>
</table>
2.5. Phase contrôle :

Le but de cette étape est de voir la pertinence des actions mise en place et leur impact sur l’objectif défini et une comparaison de ces résultats avec la situation de départ est primordiale.

2.5.1. Suivi étendu des défauts durant S01 à S20 :

Le tableau ci-dessous (tableau 2.8) contient toutes les datas nécessaires de chaque défaut de la semaine 01 à la semaine 20.

<table>
<thead>
<tr>
<th>Semaine</th>
<th>PCB avec Bavure</th>
<th>LF déformé</th>
<th>Qté produite</th>
<th>PPM PCB avec Bavure</th>
<th>PPM LF déformé</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>430</td>
<td>95</td>
<td>23800</td>
<td>18067</td>
<td>3992</td>
</tr>
<tr>
<td>S2</td>
<td>420</td>
<td>98</td>
<td>24500</td>
<td>17143</td>
<td>4000</td>
</tr>
<tr>
<td>S3</td>
<td>420</td>
<td>125</td>
<td>25600</td>
<td>16406</td>
<td>4883</td>
</tr>
<tr>
<td>S4</td>
<td>257</td>
<td>127</td>
<td>24620</td>
<td>10439</td>
<td>5158</td>
</tr>
<tr>
<td>S5</td>
<td>430</td>
<td>110</td>
<td>25628</td>
<td>16779</td>
<td>4292</td>
</tr>
<tr>
<td>S6</td>
<td>400</td>
<td>120</td>
<td>24500</td>
<td>16327</td>
<td>4898</td>
</tr>
<tr>
<td>S7</td>
<td>580</td>
<td>145</td>
<td>24500</td>
<td>23673</td>
<td>5918</td>
</tr>
<tr>
<td>S8</td>
<td>590</td>
<td>143</td>
<td>25000</td>
<td>23600</td>
<td>5720</td>
</tr>
<tr>
<td>S9</td>
<td>623</td>
<td>150</td>
<td>23892</td>
<td>26076</td>
<td>6278</td>
</tr>
<tr>
<td>S10</td>
<td>420</td>
<td>131</td>
<td>23052</td>
<td>18220</td>
<td>5683</td>
</tr>
<tr>
<td>S11</td>
<td>410</td>
<td>129</td>
<td>25628</td>
<td>15998</td>
<td>5034</td>
</tr>
<tr>
<td>S12</td>
<td>400</td>
<td>120</td>
<td>24500</td>
<td>16327</td>
<td>4898</td>
</tr>
<tr>
<td>S13</td>
<td>390</td>
<td>116</td>
<td>24500</td>
<td>15918</td>
<td>4735</td>
</tr>
<tr>
<td>S14</td>
<td>350</td>
<td>100</td>
<td>25000</td>
<td>14000</td>
<td>4000</td>
</tr>
<tr>
<td>S15</td>
<td>250</td>
<td>87</td>
<td>23892</td>
<td>10464</td>
<td>3641</td>
</tr>
<tr>
<td>S16</td>
<td>100</td>
<td>78</td>
<td>23052</td>
<td>4338</td>
<td>3384</td>
</tr>
<tr>
<td>S17</td>
<td>70</td>
<td>68</td>
<td>24500</td>
<td>2857</td>
<td>2776</td>
</tr>
<tr>
<td>S18</td>
<td>65</td>
<td>65</td>
<td>25000</td>
<td>2600</td>
<td>2600</td>
</tr>
<tr>
<td>S19</td>
<td>69</td>
<td>69</td>
<td>25000</td>
<td>2760</td>
<td>2760</td>
</tr>
<tr>
<td>S20</td>
<td>66</td>
<td>69</td>
<td>25000</td>
<td>2640</td>
<td>2760</td>
</tr>
</tbody>
</table>

Tableau 2.8 : Suivi global des défauts de S01 à S20
2.5.2. **Tendance positive du problème PCB avec Bavure** :

La courbe ci-dessous (figure 2.17) montre la tendance positive après la mise en place des actions et les résultats atteignent enfin les objectifs de nouveau.

![Figure 2.17 : IPPM par défaut PCB avec bavure](image)

2.5.3. **Tendance positive du problème LF déformé** :

La courbe ci-dessous (figure 2.18) montre aussi la tendance positive du défaut LF déformé du S01 à S20.

![Figure 2.18 : IPPM par défaut LF déformé](image)
2.5.4. IPPM ligne général :

Suite aux actions faites, une baisse du taux de défauts est largement remarquable (inférieur à 2800), voir figure 2.19. Les résultats IPPM sont satisfaisants et félicitation à toute l’équipe pour le travail énorme fait.

![Figure 2.19 : IPPM ligne Général](image)

2.5.5. IPPM Unité Autonome de Production :

Vu l’importance de la ligne traitée sur le résultat IPPM APU, car le découpage est la ligne goulot de toute la zone SLS (Sunload Sunsor), on voit même une tendance positive sur l’IPPM APU (figure 2.20).

![Figure 2.20 : IPPM Unité Autonome de Production](image)
2.5.6. Valeur rebut améliorée :

Etant donné le coût des PCB qui est le composant le plus cher dans l’usine et le rebuter génère un coût de non qualité très important, notre projet a touché positivement aussi la valeur de scrap et ci-dessous sa tendance améliorée du S01 à S20 (figure 2.21).

![Scrap Cost](image)

Figure 2.21: Scrap cost du S01 à S20
2.6. Phase de contrôle :

Le but de cette étape est de mettre en place les systèmes de contrôle et procédure adéquate afin de maintenir les actions faites dans le temps, c’est le rôle du roue de Deming exactement dans la démarche du PDCA.

Pour cela, des actions sont été planifiées pour S20 pour assurer la stabilité de ce projet dans le temps (voir tableau 2.9)

<table>
<thead>
<tr>
<th>PREVENTIVE ACTION</th>
<th>RESP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mise en place d'un stock de sécurité pour les fraises</td>
<td>Bassem Hellal</td>
</tr>
<tr>
<td>Généralisation du stock de sécurité pour toutes les pièces de rechange qui nécessite</td>
<td>Bassem Hellal</td>
</tr>
<tr>
<td>MAJ Gamme MP2 afin de vérifier l’usure du guidage plateau dans machine</td>
<td>Bassem Hellal</td>
</tr>
<tr>
<td>MAJ gamme MP2 afin de vérifier l’usure du goupille de guidage plateau</td>
<td>Bassem Hellal</td>
</tr>
<tr>
<td>MAJ gamme MP2 afin d’ajouter la vérification de l’état d’usure des bagues hebdomadairement</td>
<td>Bassem Hellal</td>
</tr>
<tr>
<td>Elaboration d'un planning de chantier 0 Défauts pour toutes l'usine permettant de suivre les défauts et le scrap cost des lignes pareto.</td>
<td>Amira Dhaouadi</td>
</tr>
<tr>
<td>Recrutement d'une ressource qui s'occupera de la validation des équipements de toute l'usine.</td>
<td>Amira Dhaouadi</td>
</tr>
</tbody>
</table>

Tableau 2.9 : Plan d’action de la phase de contrôle

Conclusion :

Dans ce chapitre on a réalisé la partie pratique et application de la démarche du méthodologie six sigma dans notre entreprise Casco. Notre projet a donné satisfaction grâce à l’utilisation du plusieurs démarches et outils qui aide à la résolution des problèmes et qui était efficace. Les étapes du six sigma ont été appliquées avec la contribution de toute l’équipe pluridisciplinaire qui ont appliqué leur savoir-faire, leur historique et leur brainstorming pour réussir ce défi.
Conclusion générale

Dans le monde du secteur automobile, la vitesse et le rythme d’évolution sont très rapides. Sur cette base les entreprises ont opté et utilisé les démarches d’amélioration continue. Ces derniers visent l’optimisation des processus de production ainsi que la gestion des compétences de leurs effectifs.

Dans ce thème se présente notre projet, afin d’atteindre les objectifs de performance, une équipe d’amélioration a fait le focus sur une ligne goulot de l’usine.

Ce chantier a été élaboré en utilisant la démarche six sigma une des meilleures méthodologies d’amélioration continue dans le monde.

On a abordé le projet en définissant le problème et les processus défaillants.

On a effectué une analyse des causes, on a analysé les modes de défaillances de processus et on a détecté les causes les plus critiques.

La mesure du niveau de réussite actuel et à partir des objectifs d’amélioration déjà fixés, on a pu réduire le taux de défauts et valeur de scrap à travers la réduction des IPPM et scrap à l’objectif qui est 2800 PPM et 500 Dt/semaine. La totalité de la zone autonome de production est devenue aussi à l’objectif grâce au notre projet réussi.

Ce projet m’a permis de consolider mes savoirs, savoir-faire et savoir être.

Il était une occasion pour enrichir mes connaissances théoriques et pratiques et de les confronter à la réalité à la vie professionnelle.

Je propose comme perspective d’avenir pour ce projet la mise en place d’autres projets dans la société et qui touche d’autres zones comme le magasin import-export et ça à partir des résultats issus de ce projet.
Références bibliographiques

[3] Alain Fernandez, Diagramme causes-effets, "arête de poisson" ou Ishikawa

[4] Nicolas Volck : déployer et exploiter Lean Six Sigma [consulter 20/05/19]

[6] Maurice Pillet : six sigma comment l’appliquer [consulter le 10/05/19]

[7] Cristian Hohmann : accueil-six sigma et outils qualité-six sigma les basiques-SIPOC [consulter le 24/04/19]

[8] AFNOR-Mars 2017 : introduction à la méthodologie QFD [consulter le 14/05/19]
Annexe 1 : QRQC Ligne

<table>
<thead>
<tr>
<th>Ligne</th>
<th>Caractérisation du problème et Sécurisation</th>
<th>Cause</th>
<th>Action(s)</th>
<th>Délai</th>
<th>Filtre</th>
<th>Vérification par équipe (V/O)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Recherche du problème?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Recherche QRQC</td>
</tr>
<tr>
<td></td>
<td>Comment le défaut a été détecté?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Non</td>
</tr>
<tr>
<td></td>
<td>N° QRQC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Référence du PPS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Comment le défaut a été produit?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Date</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Qui a détecté le défaut?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Où le défaut a été produit?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Qui a produit le défaut?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CASCO
DRIVING POWER-FULL SOLUTIONS

Code : CAT-QUA-002/203.3I
Date : Avril 2010
Page : 11
Annexe 2 : Formulaire d’enregistrement des défauts

<table>
<thead>
<tr>
<th>Code Déf</th>
<th>Désignation (*)</th>
<th>Lun</th>
<th>Mar</th>
<th>Mer</th>
<th>Jeu</th>
<th>Ven</th>
<th>Sam</th>
<th>Dim</th>
</tr>
</thead>
<tbody>
<tr>
<td>84000</td>
<td>LF cassé</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84005</td>
<td>LF déformé</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84010</td>
<td>LF levé</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84015</td>
<td>LF ac bavure</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84020</td>
<td>LF violet</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84025</td>
<td>LF blanc</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84030</td>
<td>LF jaunâtre</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84035</td>
<td>PCB ac bavure</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84040</td>
<td>PCB ac cuivre</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84045</td>
<td>PCB endo</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84050</td>
<td>Pb asp soudure</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84055</td>
<td>Trou PCB ss cuivre</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84060</td>
<td>Pièce par terre</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84065</td>
<td>Essai Maint</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Défaut

Quantité Produite

PPM Shift

Matricule Opératrice

(•) Alérer le service qualité si le seuil d’alerte (SA) est atteint
(••) Si cette FB est utilisée pour un Mur Qualité ou test, tous les SA sont à 1
Annexe 3 : Plan famille MQB
Annexe 4 : Plan Lead Frame