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Abstract. This paper investigates the potential impact of secondary information on rainfall mapping applying
Ordinary Kriging. Secondary information tested is a natural area indicator, which is a combination of topo-
graphic features and weather conditions. Cross validation shows that secondary information only marginally
improves the final mapping, indicating that a one-day accumulation time is possibly too short.

1 Introduction

Rainfall varies in both space and time. This variability in-
creases with shorter time scales. Hence it is more difficult
to interpolate with a limited number of observations on daily
than on monthly or annual time scales (Haylock et al., 2008;
Yatagai et al., 2009).

Many previous approaches have been made to map pre-
cipitation from gauge-observations. Some ignored the spa-
tial covariance structure and knowledge of precipitation pro-
cesses like orographic effects as Thiessen polygons (TP)
and inverse distance weighting (IDW) methods do; several
considered spatial covariance structure of precipitation as
Kriging does (Goovaerts, 2000; Beck and Ahrens, 2006);
Goovaerts pointed out that geo-statistical methods, such as
Ordinary Kriging (OK) outperform traditional techniques.

In case an external variable is highly correlated to the stud-
ied variable, this correlation can be used to improve the spa-
tial interpolation of the variable of interest. A straightfor-
ward method to introduce secondary data is by regression of
rainfall versus elevation (Daly et al., 1994; Guan and Wil-
son, 2005). However, rainfall at a particular grid-node is de-
rived from elevation at this point only, not taking into account
surrounding point measurements. In Ordinary Co-Kriging
(OCK), spatial correlations between the variable of interest
and the external variable are used to modify the kriging equa-
tion system (Goovaerts, 2000). This method is highly com-
plex as the covariances of all variables have to be estimated
together.
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However, while precipitation amount is known to increase
with terrain height over larger accumulation times, it gener-
ally is weakly correlated to terrain height for short (e.g. daily)
accumulation times (Daly, 2002; Goovaerts, 2000). Thus in-
stead of including the external information directly into the
interpolation algorithm, this study presents a way of con-
sidering external information in a modified way regarding
weather conditions and greater topographical features.

Subsequently daily precipitation data from Germany are
interpolated using two techniques: (1) methods that use
only daily rainfall data recorded at 759 stations in Germany
(TP, IDW, OK); (2) algorithms that combine rainfall data
with secondary information (Kriging of Observational Ra-
tios (KOR), and OcK with natural area indicator (NAI) as
secondary information). The prediction performance of the
different algorithms is compared using cross validation (e.g.,
Wackernagel, 2003). Stochastic interpolation, which is re-
lated to Kriging, but not minimizing the Kriging-variance, is
used for evaluating the quality of estimation uncertainty pro-
vided by techniques implementing ancillary information.

2 Data

Germany consists of a complex topography, ranging from the
flat maritime area to the north close to sea level, the hilly low
mountain ranges in the middle part with terrain heights of
500 to 1000 m and the alpine area to the south, with an area
of approximately 357 000 km2. To the south west the Black
Forest and Swabian Mountains are most prominent with up
to 1500 m, in the south-eastern part close to the border to
Austria the elevation reaches almost 3000 m.
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Figure 1. Orographical map of Germany with 759 daily opera-
tionally measuring rain-gauges indicated by black dots. Low areas
green, and high areas brown.

2.1 Rain-gauge network

For this study 759 operationally measuring rain-gauges were
available, operated by the German Weather Service (DWD),
indicated by black dots in Fig. 1. They provide a network
of continuous measurements with a fairly homogenous na-
tionwide coverage, and an average distance between neigh-
bouring stations of about 21 km. However, the density of the
stations is reduced in higher elevations. Due to the height
dependence of rainfall distribution, such biases in the station
distribution can lead to systematic errors in the interpolation
procedure.

2.2 Secondary information

Terrain elevation is known to be highly correlated with
climate variables at least over longer accumulation times
(Goovaerts, 2000; Daly et al., 2002). Here, a digital eleva-
tion model (DEM) is used with a spatial resolution of 1 km2

as secondary information (available from US Geological Sur-
vey, EROS Data Center, Sioux Falls, SD). The orography is
shown in Fig. 1. From the DEM further information is de-
duced, such as steepness of terrain, aspect ratio and promi-
nence of terrain.

2.3 Weather types

The propagation of rain-patterns is highly influenced by the
interaction of orography and the wind-field. For example,
mountain ridges are able to partially block moisture bear-
ing air, forcing it to ascend. This leads to pronounced pre-
cipitation on windward sides, and less rain or even no rain
on leeward sides of terrain. Especially in case of low wind
speeds blocking is more likely, as the ability of moist air to
rise above mountain ridges and propagation of rainfall to-
wards lee-ward sides is limited.

This study distinguishes between nine weather types, char-
acterized by wind direction and wind speed. The four main
wind directions (NW, SW, SE, NE) are further split into
strong wind and weak wind by a threshold of 10 m/s, the
ninth weather type is characterized by no prevailing wind di-
rection.

The horizontal wind direction for each grid point is derived
from the wind component data of the 700 hPa level (Bissolli
and Dittmann, 2001), distinguishing the four main wind di-
rections. Daily average wind speed, with a spatial resolu-
tion of 2.5◦ ×2.5◦, averaged over Germany, at the 850 hPa
level, is noted byhttp://www.esrl.noaa.gov/psd/data/gridded/
tables/land.html.

3 Methods

This section briefly introduces the different interpolation
methods used in this study.

3.1 Univariate methods

3.1.1 Thiessen Polygone (TP) Method

This is a simple interpolation method assigning to each grid
cell the value of the closest observation and is also called
nearest neighbour interpolation (Goovaerts, 2000). An ex-
ample is given in Fig. 2a, representing daily rainfall on
1.1.2007.

3.1.2 Inverse Distance Weighting (IDW)

To prevent unrealistic artefacts at polygon borders, rainfall
can be estimated as a linear combination of surrounding rain-
gauge observations, with the weights being inversely propor-
tional to the distance between observations to the powerp.
The idea of the weighting system is to put more emphasis
on the observations closest to the grid cell to be estimated
(Wackernagel, 2003). In this study interpolation is done from
6 surrounding observations and a distance weighting power
of p=1.6 yielding the least RMSE error using cross valida-
tion with all stations in Germany for all wet days in 2007,
and was held constant over the whole year.
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      2.1.  Rain-gauge network
For this study 759 operationally measuring rain-gauges
were available, operated by the German Weather Service
(DWD), indicated by black dots in Fig. 1. They provide a
network of continuous measurements with a fairly
homogenous nationwide coverage, and an average
distance between neighbouring stations of about 21 km.
However, the density of the stations is reduced in higher
elevations. Due to the height dependence of rainfall
distribution, such biases in the station distribution can
lead to systematic errors in the interpolation procedure. 

      2.2.  Secondary Information
Terrain elevation is known to be highly correlated with
climate variables at least over longer accumulation times
(Goovaerts, 2000, Daly et al., 2002). Here, a digital
elevation model (DEM) is used with a spatial resolution
of 1 km² as secondary information (available from U.S.
Geological Survey, EROS Data Center, Sioux Falls, SD).
The orography is shown in Fig. 1. From the DEM further
information is deduced, such as steepness of terrain,
aspect ratio and prominence of terrain. 

      2.3.  Weather Types
The propagation of rain-patterns is highly influenced by
the interaction of orography and the wind-field. For
example, mountain ridges are able to partially block
moisture bearing air, forcing it to ascend. This leads to
pronounced precipitation on windward sides, and less
rain or even no rain on leeward sides of terrain.
Especially in case of low wind speeds blocking is more
likely, as the ability of moist air to rise above mountain
ridges and propagation of rainfall towards lee-ward sides
is limited.
This study distinguishes between nine weather types,
characterized by wind direction and wind speed. The four
main wind directions (NW, SW, SE, NE) are further split
into strong wind and weak wind by a threshold of 10 m/s,
the ninth weather type is characterized by no prevailing
wind direction.
The horizontal wind direction for each grid point is
derived from the wind component data of the 700 hPa
level (Bissolli and Dittmann, 2001), distinguishing the
four main wind directions. Daily average wind speed,
with a spatial resolution of 2.5° x 2.5°, averaged over
Germany, at the 850 hPa level, is noted by  http://www  .  
esrl  .noaa  .gov/  psd/data/gridded/tables/land.html  .

3. Methods

This section briefly introduces the different interpolation
methods used in this study. 

      3.1. Univariate methods

      3.1.1.  Thiessen Polygone (TP) Method
This is a simple interpolation method assigning to each
grid cell the value of the closest observation and is also
called nearest neighbour interpolation (Goovaerts, 2000).
An example is given in Fig. 2a, representing daily
rainfall on 1.1.2007.

      3.1.2. Inverse Distance Weighting (IDW)
To prevent unrealistic artefacts at polygon borders,
rainfall can be estimated as a linear combination of
surrounding rain-gauge observations, with the weights
being inversely proportional to the distance between
observations to the power p. The idea of the weighting
system is to put more emphasis on the observations
closest to the grid cell to be estimated (Wackernagel,
2003). In this study interpolation is done from 6
surrounding observations and a distance weighting power
of p = 1.6 yielding the least RMSE error using cross
validation with all stations in Germany for all wet days in
2007, and was held constant over the whole year. 

3.2. Geostatistical methods without ancillary
variables

      3.2.1.  Ordinary Kriging (OK)
OK is a generalized least-square regression technique
that allows to account for spatial dependence between
observations. Like inverse distance weighting OK
estimates the unknown rain amount at grid cells as a
linear combination of neighbouring observations. The
weights are obtained by minimization of the estimation
variance, while ensuring the unbiasedness of the
estimator. Instead of Euclidean distance, OK uses a
semivariogram as a measure of distance in the observed
rain-field. The semivariogram reflects the intuitive
feeling that measurements of two rain-gauges close to
each other are more alike than those further apart. Like
IDW and TP the OK (without nugget effect) reproduces
the observations at the station locations.
A spherical climatological variogram model with range
of 160 km is chosen for interpolating daily rainfall. Input
data firstly are normal score transformed, afterwards all
ranges are averaged for days with at least 0.1 mm
precipitation per day German wide. This has two reasons,
on the one hand this yields the least RMSE in cross
validation, on the other hand the stochastic simulation
procedure becomes more stable. An example is given in
Fig. 2b, representing daily rainfall on 1.1.2007.

Figure 2: Rain maps for Germany, 1.1.2007 (units in
mm). Used interpolation methods are (a) Thiessen
Polygones (TP) and (b) Ordinary Kriging (OK).

Figure 2. Rain maps for Germany, 1.1.2007 (units in mm). Used
interpolation methods are(a) Thiessen Polygones (TP) and(b) Or-
dinary Kriging (OK).

3.2 Geostatistical methods without ancillary variables

3.2.1 Ordinary Kriging (OK)

OK is a generalized least-square regression technique that
allows to account for spatial dependence between observa-
tions. Like inverse distance weighting OK estimates the
unknown rain amount at grid cells as a linear combination
of neighbouring observations. The weights are obtained by
minimization of the estimation variance, while ensuring the
unbiasedness of the estimator. Instead of Euclidean distance,
OK uses a semivariogram as a measure of distance in the
observed rain-field. The semivariogram reflects the intuitive
feeling that measurements of two rain-gauges close to each
other are more alike than those further apart. Like IDW and
TP the OK (without nugget effect) reproduces the observa-
tions at the station locations.

A spherical climatological variogram model with range of
160 km is chosen for interpolating daily rainfall. Input data
firstly are normal score transformed, afterwards all ranges are
averaged for days with at least 0.1 mm precipitation per day
German wide. This has two reasons, on the one hand this
yields the least RMSE in cross validation, on the other hand
the stochastic simulation procedure becomes more stable. An
example is given in Fig. 2b, representing daily rainfall on
1.1.2007.

3.3 Geostatistical methods including secondary
information

The incorporation of secondary information potentially im-
proves the estimation of the true rain-field. A straightforward
approach is to predict rainfall as a function of the collocated
elevation, where elevation data are available at all estimation
grid-nodes. The foremost disadvantage of this approach is
that the rainfall-amount at a particular grid-node is derived
from the elevation only, regardless of the measurements at

surrounding rain-gauges. This approach presumes that the
residual values are spatially uncorrelated. A more promising
approach is to combine a geostatistical method, which is able
to account for spatial correlation of rainfall, with ancillary
information. In this study two types are tested: (1) Ordinary
Co-Kriging (OCK), and (2) Kriging of Observational Ratios
(KOR).

3.3.1 Ordinary Co-Kriging (OCK)

The OCK is a multivariate extension of OK. In OCK, spa-
tial correlations between the variable of interest and the
secondary variable are used to modify the Kriging system
(Goovaerts, 2000). Disadvantageous is its screening of fur-
ther away elevation data. Furthermore the Co-Kriging sys-
tem can be unstable in case of inhomogeneous orographical
structures, as it is the case in Germany. The main reason for
this instability is the much higher correlation between close
elevation data, than the correlation between distant rainfall
data (Goovaerts, 2000; Wackernagel, 2003). To avoid in-
stability in the subsequent modelling of direct and cross-
semivariograms, elevation is computed from the 759 rain-
gauge stations only, not the entire DEM. Details of elevation
map do not appear in the rainfall-map as elevation is only
taken for improving the estimate of spatial variability.

3.3.2 Kriging of Observational Ratios (KOR): natural
area indicators as secondary information

This is an alternative method to OCK, which decouples the
regression and the interpolation part. Here, OK is performed
on ratios obtained dividing daily observations by a natural
area indicator. Ratios have the advantage of avoiding neg-
ative values as well as allowing for non-linear relations be-
tween primary and secondary variable.

Primarily an indicator value specific to the prevailing
weather condition is calculated for each grid-node, combin-
ing orographical parameters deduced from a DEM (eleva-
tion, slope, prominence of terrain, and wind facing direc-
tion), which is explained in the following. The weather spe-
cific indicator value links the orography to the observed rain-
fall (averaging rainfall for similar conditions). Thereafter the
natural area indicator is calculated, such as to maximize the
correlation between a single day observation and his respec-
tive indicator value specific to the prevailing weather condi-
tions.

Orographical parameters

To only account for main orographical features, elevation
data (h) are smoothed using a Gaussian filter with radius 9 km
(Fig. 3a), inspired by a study of Smith et al. (2003) which
found that the dominant spatial-scale of lifting and rainfall is
in the Alps about 10 km.
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Figure 3. Illustration of terrain features deduced from the DEM:
(a) smoothed DEM using Gaussian-filter with radius 5 km [m],(b)
prominence of terrain,(c) relative facing-value with wind from NW,
wind speed>10 m/s, (d) indicator values [–].

Slope is calculated as the maximum change in elevation
over the distance between the cell and its eight neighbours.

The aspect depicts the down-slope direction of the maxi-
mum rate of change in elevation from each node to its neigh-
bours, and is useful for distinguishing windward from lee-
ward sides as a function of wind direction, and wind speed.
For each single day a facing-value is deduced from the as-
pect ratio given the mean wind direction, and the wind speed.
The relative down-weighting of the area on the leeward side
is smaller in case wind-speed exceeds 10 m/s (Fig. 3c). The
weights are calculated, such as to maximize the correlation
between observed rainfall and facing-value.

The so called prominence (prom) of terrain specifies the
effectiveness of terrain to alter the precipitation-field. Ac-
cording the method suggested by Daly et al. (2002) for each
grid node the maximum elevation difference to grid nodes
within radius 100 km is determined Grid nodes with eleva-
tion differences greater than 500 m are assigned 1, smaller
than 100 m 0, or otherwise a value between 0 and 1 (Fig. 3b).

Calculation of the indicator

Nine climatological indicator values are determined, one for
each weather type. Observations are averaged for days of the

ratiok  = 
obs k

NAI k
  (6)

yielding k ratios, which are normalized before
interpolation is done.

Figure 3: Illustration of terrain features deduced from
the DEM: (a)  smoothed DEM using Gaussian-filter with
radius 5 km [m],  (b) prominence of terrain, (c) relative
facing-value with wind from NW, wind speed  > 10 m/s,
(d) indicator values [-].

Figure 4: Precipitation versus natural area indicator for
1.1.2007. A 3rd order fit, which maximizes the
correlation between trend-value and observation is
shown (correlation coefficient = 0.577).

3.3. Modelling uncertainty
The probabilistic way to model the uncertainty of a
variable at any grid-node consists of viewing the
unknown value as the realization of a random variable,
and deriving its conditional cumulative distribution
function (ccdf). The ccdf fully models the uncertainty at
a grid-node, since it gives the probability that the
unknown variable is now greater than any given
threshold. Under the multiGaussian model, the ccdf at
any location is Gaussian and completely characterized by
its mean and variance, which corresponds to the Kriging
estimate and variance. The approach requires a prior
normal score transform of the input data to ensure that at
least the univariate distribution is normal (Deutsch and
Journel, 1998). The normal score ccdf then is back-
transformed to yield the ccdf of the original variable.
Stochastic simulation (SGI, Deutsch and Journel, 1998;
Ahrens and Beck, 2008) has been used to assess local
uncertainty from the local distribution of simulated
values; that is the ccdf at u is approximated by:

F (u ;  z |( n ))≈ 1
L∑l=1

L

i(l) (u ; z )     (7)

where i(l) (u ; z ) = 1  if  z(l) ( u )z , and 0 otherwise,
with z the simulated value, n the neighbouring data, and
L the number of simulations. In theory, as the number of
realizations tends to infinity, the local distribution of
simulated values should match that provided by Kriging
within a similar framework (Goovaerts, 2001). 

4. Results

The performance of the different interpolation methods is
assessed and evaluated using cross validation. The idea
behind cross validation is to remove each rain-gauge
observation once in turn from the input dataset and to re-
estimate the rainfall-amount from the remaining dataset
using an interpolation method. The evaluation-criteria are
the root mean square of the prediction error (RMSE,
perfect value 0), and the variance of the interpolated rain-
field relative to the variance of the input data (perfect
value equals 1). 

RMSE [mm] relative variance [-]

Figure 5: Comparison of different interpolation methods using cross validation. The box plots indicate RMSE (left), and
relative variances (right) found for all days in 2007.
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Figure 4. Precipitation versus natural area indicator for 1.1.2007.
A 3rd order fit, which maximizes the correlation between trend-
value and observation is shown (correlation coefficient=0.577).

same weather type, yielding nine climatological observations
(obs.clim) for thek rain-gauges:

obs.climi, j,k=
1
N

N∑
n=1

obsi, j.k (1)

whereN is the number of days of the same weather type,i
the wind direction (NW, SW; SE; NE; no wind), andj the
wind speed (above or below 10 m/s).

The indicator values are calculated combining previously
defined orographical parameters:

Indi, j = log (slopeh) prom+ log (facingi, j h) (2)

such as to maximize the correlation to the respective clima-
tological observations at thek locations (Fig. 3d):

cor (Indi, j,k, mean (obs.climi, j,k)) = max (3)

Finally a natural area indicator (NAI) is calculated, which is
adjusted to daily rain-gauge observations. A non-linear re-
gression line (3rd order polynomial) defines daily rain-gauge
observations as a function of indicator values of the respec-
tive weather condition (Fig. 4):

obsk∼a+b Indk+c Ind2
k+d Ind3

k (4)

yielding parametersa, b, c, andd. These parameters are ap-
plied on indicators to calculate the NAIs:

NAI = a+b Ind+c Ind2+d Ind3 (5)

This allows for non-linear relations between daily rainfall
and indicator value. The rain-gauge observations are divided
by the NAI values at thek locations:

ratiok =
obsk
NAI k

(6)

yielding k ratios, which are normalized before interpolation
is done.
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Figure 5. Comparison of different interpolation methods using cross validation. The box plots indicate RMSE (left), and relative variances
(right) found for all days in 2007.

3.4 Modelling uncertainty

The probabilistic way to model the uncertainty of a variable
at any grid-node consists of viewing the unknown value as
the realization of a random variable, and deriving its con-
ditional cumulative distribution function (ccdf). The ccdf
fully models the uncertainty at a grid-node, since it gives
the probability that the unknown variable is now greater than
any given threshold. Under the multiGaussian model, the
ccdf at any location is Gaussian and completely characterized
by its mean and variance, which corresponds to the Kriging
estimate and variance. The approach requires a prior nor-
mal score transform of the input data to ensure that at least
the univariate distribution is normal (Deutsch and Journel,
1998). The normal score ccdf then is back-transformed to
yield the ccdf of the original variable.

Stochastic simulation (SGI, Deutsch and Journel, 1998;
Ahrens and Beck, 2008) has been used to assess local un-
certainty from the local distribution of simulated values; that
is the ccdf atu is approximated by:

F(u;z|(n))≈
1
L

L∑
l=1

i(l)(u;z) (7)

where i(l)(u;z) = 1 if z(l)(u) ≤ z and 0 otherwise, withz the
simulated value,n the neighbouring data, andL the number
of simulations. In theory, as the number of realizations tends
to infinity, the local distribution of simulated values should
match that provided by Kriging within a similar framework
(Goovaerts, 2001).

4 Results

The performance of the different interpolation methods is as-
sessed and evaluated using cross validation. The idea be-
hind cross validation is to remove each rain-gauge observa-
tion once in turn from the input dataset and to re-estimate
the rainfall-amount from the remaining dataset using an in-
terpolation method. The evaluation-criteria are the root mean
square of the prediction error (RMSE, perfect value 0), and

the variance of the interpolated rain-field relative to the vari-
ance of the input data (perfect value equals 1).

The relative variance reflects the ability of the different
interpolation algorithms to maintain the spatial variability
within the rain-field. The relative variance is calculated as
the ratio of the estimated variability and the true variability
given the left-out rain-gauges.

The evaluation is summarized in Fig. 5. The box plots
for RMSE indicate the range of interpolation errors for all
wet days (at least 0.1 mm station mean) in 2007. The
IDW and the three Kriging methods (OK, OCK, KOR) per-
form equally well, while Thiessen Polygones yields a clearly
larger RMSE value.

In terms of relative variance Thiessen Polygones yield the
best score. Hence, as the method can not distinguish between
close by rain gauges (more alike) and further away rain-
gauges (less similar), cross-validation yields a large RMSE,
but highlights its strength in maintaining the spatial variabil-
ity. IDW performs on average slightly better than the three
Kriging methods (Fig. 5). However, IDW does not provide
a direct uncertainty measure as geostatistical algorithms do
(Kriging, SGI).

Of particular interest is the result for OCK in terms of rel-
ative variance, the large spread of the box plot suggests that
OCK retains the spatial variability in some cases better but
many of the cases worse than OK. Overall KOR and OCK do
not outperform OK, neither in terms of RMSE nor in terms
of relative variance. This indicates that the gained value, if
there is any, does not appear in this evaluation exercise and
might be a consequence of the generally low correlation co-
efficient (e.g. 1.1.2007, Fig. 4).

Different methods yield models of uncertainty that can
greatly differ, and a legitimate question is weather the choice
of a technique (e.g. OK, OCK, KOR) can be supported by
the data. Cross-validation can be used to build uncertainty
models which are then compared with observations that have
been temporarily removed one at a time.

At any test locationu, knowledge of the ccdfF(u;z|(n)) al-
lows the computation of a series of symmetric p-probability
intervals (PI) bounded by the (1−p)/2 and (1+p)/2 quantiles

www.adv-sci-res.net/4/29/2010/ Adv. Sci. Res., 4, 29–35, 2010
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Figure 6. Accuracy plot indicating the ability of the different interpolators (OK, OCK, KOR) to estimate the true width of uncertainty
measure (left), and width of uncertainty measure for PIs (right) for operational rain-gauges in Germany on 1.1.2007.

of that ccdf. For example, the 0.5-PI is bounded by the
lower and upper quantiles [F−1(u;0.25|(n)),F−1(u;0.75|(n))].
A correct modelling of local uncertainty would implicate that
there is a 0.5 probability that the actual z-value atu falls into
that interval or, equivalently, that over the study area, 50% of
the 0.5-PI include the true value. If a set of z-measurements
and independently derived ccdfs are available atN locations,
u j ,{[z(u j),F(u j ,z|(n))], j = 1,...N, the fraction of true values
falling into the symmetric p-PI can be computed as:

ξ̄(p)=
1
N

N∑
j=1

ξ(u j ;p) ∀ p ∈ [0,1] (8)

with ξ(u j ;p)={
1 if F−1(u j ;(1−p)/2)< z(u j)≤ F−1(u j ;(1+ p)/2)
0 otherwise

(9)

Here, the ccdfs are inferred through 100 SGI (OK-, OCK-,
KOR- equation).

The scattergram of the estimated versus expected fractions
is called “accuracy plot”. Figure 6 (left) shows the daily rain-
fall accuracy plot computed for both OK, OCK, and KOR
ccdfs using cross-validation of 759 observations at all wet
days in 2007. The accuracy plot shows that OK overes-
timates the uncertainty for PI smaller than 0.6 (black stars
above black line), e.g. the 0.5 PI derived from the OK con-
tains 60% of the true values, while KOR, and OCK perform
better. For PIs greater than 0.6 OK performs better. Here,
COK contains too few true values.

5 Conclusions

Secondary information has to be considered in terms of ac-
cumulation time and complexity of terrain. Combining OK
with a NAI only slightly improves the evaluation results inde-
pendent of the applied combination approach. Introduction
of secondary information with observational ratios yields a
small improvement in terms of uncertainty measure, as could
be shown with the accuracy plot (Fig. 6, left).

As is shown, the number of true values within interval is
closer to the expected number (given by the PI) when incor-
porating NAI values. Otherwise the width of the probability
interval seems too wide indicating overestimation of the true
uncertainty. This is not true for probability intervals greater
than 0.6. Overall the gain is minimal. The foremost reason
for this is the too short accumulation time, as the spatial dis-
tribution of precipitation tends to be better defined by topo-
graphical/external parameters for longer accumulation times
(Goovaerts, 2000). New techniques introducing secondary
information should be investigated, e.g. by means of a strati-
fied variogram which is separately inferred from rain-gauges
within similar topographical features. Another way might be
to determine parameters such as NAI on a physically mean-
ingful basis, or adding further parameters such as humidity
or stability (Haiden et al., 2008), instead of determining them
statistically. The main challenge is the fact that any simple,
static, either topographical or weather-type based index can
capture only a small part of the complex processes involved.
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