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Consider the IVP {
ut −∆u = f (u)

u(0) = u0
(1)

u(t, x) : R+ × Rd → R.

f ∈ C1(R,R) with f (0) = 0.

u0 ∈ L∞ =⇒ ∃ T (u0) > 0 and a unique solution
u ∈ C([0,T [; L∞) to (1).

The Cauchy problem (1) has been extensively studied in the
scale of Lebesgue spaces Lq, especially for polynomial type
nonlinearities i.e.

f (u) := ±|u|γ−1u, γ > 1. (2)

Scaling invariance:

u(t, x) =⇒ uλ(t, x) := λ2/γ u(λ2t, λx), λ > 0 .
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The Lebesgue space Lqc (Rd) with index qc := d(γ−1)
2 is the

only one invariant under the same scaling.
Subcritical case: q ≥ qc ≥ 1

Weissler [1980]: Existence and uniqueness in
CT (Lq) ∩ L∞loc(L∞).
Brezis-Cazenave [1996]: Unconditional uniqueness.

Critical case: q = qc and d ≥ 3. There are two sub-cases:
qc > γ + 1, or equivalently γ > d+2

d−2 . The existence was proved
by Weissler and the uniqueness by Brezis-Cazenave.
q = qc = γ + 1, or equivalently q = 2d

d−2 and γ = d+2
d−2 (double

critical case).
• Weissler [1981]: Conditional wellposedness.
• Ni-Sacks [1985]: Nonuniqueness where the underlying space
is the unit ball.
• Terraneo [2002]: Nonuniqueness for the whole space and for
suitable data.
• Matos-Terraneo [2003]: Nonuniqueness for general data.
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Supercritical case: q < qc .

• Haraux-Weissler [1982]: Uniqueness is lost for initial data
u0 = 0 and for 1 + 1

d < γ < d+2
d−2 .

• There exists no (local) solution in any reasonable weak
sense.

Ribaud [1998]: Wellposedness in Sobolev spaces Hs
p.

Miao-Zhang [2004]: Wellposedness in Besov spaces.
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One of the results of Miao-Zhang is the global well posedness
in H1(R2) for small data, and for nonlinearities f satisfying

|f ′(u)| ≤ C |u|2 eu .

Recall that the Sobolev space H1(R2) is embedded in all
Lebesgue spaces Lp(R2) for every 2 ≤ p <∞ but not in
L∞(R2).

The optimal (critical) Sobolev embedding is known to be

H1(R2) ↪→ L(R2), (3)

where L(R2) is the Orlicz space associated to the function
φ(s) = es2 − 1

A natural question to ask then is: what is the critical
nonlinearity in dimension d = 2?
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A natural model to investigate in 2D isut −∆u = ±u(eu2 − 1) in R2

u(0) = u0

(4)

GoaL: Existence and/or uniqueness of local/global solutions
to (4) when the data is no longer in L∞.

The largest Lebesgue type space in which the equation is
meaningful in the distributional sense is of Orlicz kind.

Ruf & Terraneo [2002]: Local existence for small data in
Orlicz space.
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Good H1- Theory

Theorem

Let u0 ∈ H1(R2).

1 There exists a unique solution u to (4) in C([0,T ],H1).

2 If f (u) = −u(eu2 − 1), then the (above) solution is global.

3 If f (u) = u(eu2 − 1), u0 6= 0 and J(u0) ≤ 0, then the (above)
solution blows up in finite time.

Here the energy J is given by

J(u(t))
def
=

1

2
‖∇u(t)‖2

L2(R2) −
∫

R2

F (u(t)) dx ,

where

F (u) =

∫ u

0
f (v) dv .
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Nonuniqueness

Theorem

Let B1 be the unit ball of R2. There exists infinitely many
u0 ∈ L(B1) such that the Cauchy problem

ut −∆u = u(eu2 − 1) in B1

u(0) = u0 in B1

u|∂B1
= 0 for t > 0

(5)

has at least two solutions.
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‖et∆ϕ‖Lγ ≤ C t
1
γ
− 1

β ‖ϕ‖Lβ , t > 0, 1 ≤ β ≤ γ ≤ ∞ .

Using Duhamel’s formula for the equation ut −∆u = F (t, x),
we deduce

‖u‖L∞T (H1) ≤ C
(
‖u(0)‖H1 + ‖F‖L1

T (H1)

)
‖u‖L∞T (H1) ≤ C

(
‖u(0)‖H1 + ‖F‖L1

T (L2) + T 1/2 ‖∇F‖L∞T (L1)

)
‖u‖L∞T (L∞) ≤ C

(
‖u(0)‖L∞ + ‖F‖L1

T (L∞)

)
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In order to control the nonlinear part in L1
t (H1

x ), we will use the
following Moser-Trudinger type inequalities.

∫
R2

(
eα|u(x)|2 − 1

)
dx ≤ Cα‖u‖2

L2(R2) whenever 0 ≤ α < 4π

and u ∈ H1 satisfying ‖∇u‖L2 ≤ 1. The above inequality is
false for α ≥ 4π.

If we require ‖u‖H1 ≤ 1 rather than ‖∇u‖L2 ≤ 1, we obtain

sup
‖u‖H1≤1

∫
R2

(
e4π|u(x)|2 − 1

)
dx <∞ .

The above property is false for α > 4π.
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Definition

Let φ : R+ → R+ be a convex increasing function such that

φ(0) = 0 = lim
s→0+

φ(s), lim
s→∞

φ(s) =∞.

The Orlicz space Lφ is defined via the Luxembourg norm

‖u‖Lφ = inf

{
λ > 0,

∫
Rd

φ

(
|u(x)|
λ

)
dx ≤ 1

}
.

φ(s) = sp, 1 ≤ p <∞ =⇒ Lφ = Lp.

φα(s) = eαs2 − 1 =⇒ Lφα = Lφ1 = L.
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We shall use the following properties of Orlicz spaces.

If T : L1 → L1 with norm M1 and T : L∞ → L∞ with norm
M∞, then T : Lφ → Lφ with norm

M ≤ κφ,d sup(M1,M∞),

where κφ,d depends only on φ and the dimension d .

For any p ≥ 2, L(R2) ⊂ Lp(R2) and we have

‖u‖Lp ≤
(

Γ(
p

2
+ 1)

) 1
p ‖u‖L .
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Recall the following parabolic regularizing effect due to
Brezis-Cazenave that we will use to obtain a locally (in time)
bounded solution to (4) with singular data. Consider the following
linear heat equation with potential

ut −∆u − a(t, x)u = 0 in Ω,
u = 0 on ∂Ω,

u(0) = u0,
(6)

where Ω is a smooth bounded domain of R2.

Theorem (Brezis-Cazenave)

Let 0 < T <∞, σ > 1, and let a ∈ L∞([0,T ]; Lσ). Given u0 ∈ Lr ,
1 ≤ r <∞, there exists a unique solution
u ∈ C([0,T ]; Lr ) ∩ L∞loc([0,T ]; L∞) of equation (6).
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Local existence in H1

We decompose the initial data u0 ∈ H1 as

u0 = u0,N + uN
0 (N large)

= H1 ∩ L∞ + small in H1

We solve the IVP with data u0,N to obtain a local solution v .

To recover a solution of our original problem we solve a
perturbed equation satisfied by w := u − v with small data
uN

0 .
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Unconditional uniqueness

Let u, v ∈ C([0,T ]; H1) be two solutions to (4) with same data u0

and set w := u − v . Then

w(t) =

∫ t

0
e(t−s)∆a(s)w(s) ds,

where the potential a is given by

a(t, x) :=


f (u)−f (v)

w if w 6= 0

f
′
(u) if w = 0

Remark that w ∈ L∞(0,T ; Lq) for any 2 ≤ q <∞.
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To prove that w ≡ 0 on [0,T ], we use the following lemma which
can be seen as an extension to dimension two of Brezis-Cazenave’s
results about dimension d ≥ 3.

Lemma

Let a ∈ C([0,T ]; Lp(R2)) and u ∈ L∞((0,T ); Lq(R2)) with
2 ≤ q <∞, 1 < p <∞, 1

p + 1
q 6= 1, and such that

u(t) =

∫ t

0
e(t−s)∆a(s)u(s)ds, 0 ≤ t ≤ T .

Then u = 0 on [0,T ].

A crucial fact here is that the potential is continuous in time. We
don’t know how to extend this lemma to the case when the
potential is only L∞ in time.
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The uniqueness follows once we prove that
a ∈ C([0,T ]; Lp(R2)) for some 1 < p <∞.

This basically follows from the fact that

u ∈ C([0,T ]; H1(R2)) =⇒ eu2 − 1 ∈ C([0,T ]; L1(R2)) .
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Global existence

Here we assume that f (u) = −u
(
eu2 − 1

)
.

Proposition

Assume that u0 ∈ H1(R2) and u ∈ C([0,T ); H1(R2)) solution to
(4). Then

‖u(t)‖L∞ ≤
√

2 ‖u0‖L2 , 0 < t < T .

We use the level set energy inequality for ck := M(1− 2−k), where
M > 0 will be chosen later. This idea was used by
Caffarelli-Vasseur (Annals of Mathematics (2010)) for the
quasi-geostrophic equation.
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This leads to the following energy inequality for the level set

function uk
def
= (u − ck)+:

d

dt

∫
R2

|uk(t)|2 dx + 2

∫
R2

|∇uk(t)|2dx ≤ 0 . (7)

Let t0 > 0, and denote by Tk
def
= t0(1− 2−k) and

Uk
def
= sup

t≥Tk

(∫
R2

|uk(t, x)|2 dx
)

+2

∫ +∞

Tk

∫
R2

|∇uk(t, x)|2dxdt .

By integrating (7) in time, and using some interpolation
estimates, we obtain finally

Uk ≤ A C k−1 U
α
2

k−1,

where

A
def
= 2α/2+4 M−α t−1

0 ‖u0‖2
L2 , and C

def
= 2α+1 .
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Taking α > 2 and M
def
= 2

α2+10α−12
2α(α−2) t

− 1
α

0 ‖u0‖L2 , we get

lim
k→∞

Uk = 0 .

The conclusion follows by letting α→∞.
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Blowing-up solutions

Claim: If u0 ∈ H1\{0} with J(u0) ≤ 0, then T ∗ <∞.

The proof is quite standard. Set y(t)
def
= 1

2

∫ t

0
‖u(s)‖2

L2 ds.

Since
(

uf (u)− 2F (u)
)
≥ εF (u) for some ε > 0, we find that

y(t)y ′′(t) ≥ (1 + η) (y ′(t))2 for some η = η(ε) > 0 .

The fact that this ordinary differential inequality blows up in finite
time ensures the claim.
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Nonuniqueness

The proof is done in four steps. Set Ω
def
= B(0, 1) ⊂ R2.

Step 1: We construct a singular solution Q to
−∆Q = f (Q) in Ω,

Q = 0 on ∂Ω,

Q(0) =∞, and Q > 0.
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We look for singular solutions which are radially symmetric. Letting

|x | def
= r = e−t , y(t) = Q(e−t), we obtain{

−y ′′(t) = e−2t f (y(t)), t ≥ 0
y(0) = 0, y(∞) =∞.

To solve the above problem, we proceed as follows.

For any α > 0, we consider the Cauchy problem

(Pα)

{
−y ′′(t) = e−2t f (y(t)), t ≥ 0

y(0) = 0, y ′(0) = α,

and the associated elliptic problem

(Eα)

{
−∆uα = f (uα), 0 < r < 1

uα(1) = 0, uα(0) = yα(∞).

Elliptic regularity + Existence and uniqueness of classical
radial solution =⇒ ∃ ! α0 s.t. lim

t→∞
yα0(t) = ` ∈ (0,∞).
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Set

T (α) = sup
{

s ≥ 0 ; yα > 0 on (0, s)
}

I =
{
α > 0 ; T (α) <∞

}
J =

{
α > 0 ; α /∈ I

}

The end of the proof of existence consists on showing that J is a
non trivial interval.
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Step 2: We prove that

−∆Q = f (Q) in D′(Ω).

Q ∈ L(Ω).

lim
r→0
‖Q‖L(|x |<r) = 0.
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The above classical solution in Ω\{0} is extendable to a
distribution solution in Ω thanks to the following technical lemma.

Lemma

Let u ∈ C 2(Ω\{0}), u ≥ 0, such that −∆u = f (u) in Ω\{0}.
Then

1 f (u) ∈ L1(Ω).

2 If (− log r)αuq ∈ L1(Ω) for some α
q−1 > 0, then

∆u + f (u) = 0 in D′(Ω).

This lemma can be seen as an extension to dimension two of
Ni-Sacks’ result.
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Step 3: We take Q as an initial data{
ut −∆u = f (u) in Ω

u(0) = Q, u(|x | = 1) = 0
(8)

We prove that (8) has a local solution u ∈ L∞(L(Ω)).

Since the potential eu2 − 1 is better than L1, we can apply
Brezis-Cazenave’s result about regularization effect. This leads
to u ∈ L∞(L∞(Ω)).
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Step 4: Now we are able to conclude.

u0 = Q −→ v(t, x) = Q(x)

u0 = Q −→ u(t, x) ∈ L∞(L∞(Ω))

As Q(0) =∞, we find u 6= v .
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1 We believe that there is no existence in Hs for s < 1.
(Work in progress)

2 The blow-up analysis can be refined for positive initial energy.
(Work in progress)
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Thank You
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