Energy critical heat equation in two space dimensions

Mohamed Majdoub

joint work with Slim Ibrahim, Rym Jrad & Tarek Saanouni

March 2011

Presented by: Mohamed Majdoub Energy critical heat equation ...

イロト イポト イヨト イヨト

Outline

1 Introduction

- 2 Two dimensional case
- 3 Main results
- Background material
- **5** Sketches of the proofs
- **6** Concluding remarks

イロト イポト イヨト イヨト

Introduction

Two dimensional case Main results Background material Sketches of the proofs Concluding remarks

Introduction

Presented by: Mohamed Majdoub Energy critical heat equation ...

・ロン ・四と ・ヨン ・ヨン

Introduction

Two dimensional case Main results Background material Sketches of the proofs Concluding remarks

Consider the IVP

$$\begin{cases}
u_t - \Delta u = f(u) \\
u(0) = u_0
\end{cases}$$
(1)

•
$$u_0 \in L^{\infty} \Longrightarrow \exists T(u_0) > 0$$
 and a unique solution $u \in \mathcal{C}([0, T[; L^{\infty}) \text{ to } (1).$

• The Cauchy problem (1) has been extensively studied in the scale of Lebesgue spaces L^q , especially for polynomial type nonlinearities i.e.

$$f(u) := \pm |u|^{\gamma - 1} u, \quad \gamma > 1.$$

$$(2)$$

Scaling invariance:

$$u(t,x) \Longrightarrow u_{\lambda}(t,x) := \lambda^{2/\gamma} u(\lambda^2 t, \lambda x), \quad \lambda > 0.$$

- The Lebesgue space L^{q_c}(ℝ^d) with index q_c := d(γ-1)/2 is the only one invariant under the same scaling.
- Subcritical case: $q \ge q_c \ge 1$
 - Weissler [1980]: Existence and uniqueness in $\mathcal{C}_{\mathcal{T}}(L^q) \cap L^{\infty}_{loc}(L^{\infty}).$
 - Brezis-Cazenave [1996]: Unconditional uniqueness.
- Critical case: $q = q_c$ and $d \ge 3$. There are two sub-cases:
 - q_c > γ + 1, or equivalently γ > d+2/d-2. The existence was proved by Weissler and the uniqueness by Brezis-Cazenave.
 - $q = q_c = \gamma + 1$, or equivalently $q = \frac{2d}{d-2}$ and $\gamma = \frac{d+2}{d-2}$ (double critical case).
 - Weissler [1981]: Conditional wellposedness.
 - Ni-Sacks [1985]: Nonuniqueness where the underlying space is the unit ball.
 - Terraneo [2002]: Nonuniqueness for the whole space and for suitable data.
 - Matos-Terraneo [2003]: Nonuniqueness for general data: ≥ ∽۹<
 Presented by: Mohamed Majdoub Energy critical heat equation ...

- Supercritical case: $q < q_c$.
 - Haraux-Weissler [1982]: Uniqueness is lost for initial data $u_0 = 0$ and for $1 + \frac{1}{d} < \gamma < \frac{d+2}{d-2}$.

• There exists no (local) solution in any reasonable weak sense.

• Ribaud [1998]: Wellposedness in Sobolev spaces H_p^s .

• Miao-Zhang [2004]: Wellposedness in Besov spaces.

Two dimensional case

Presented by: Mohamed Majdoub Energy critical heat equation ...

・ロン ・回 と ・ ヨン ・ モン

 One of the results of Miao-Zhang is the global well posedness in H¹(ℝ²) for small data, and for nonlinearities f satisfying

 $|f'(u)| \leq C|u|^2 e^u$.

- Recall that the Sobolev space H¹(ℝ²) is embedded in all Lebesgue spaces L^p(ℝ²) for every 2 ≤ p < ∞ but not in L[∞](ℝ²).
- The optimal (critical) Sobolev embedding is known to be

$$H^1(\mathbb{R}^2) \hookrightarrow \mathcal{L}(\mathbb{R}^2),$$
 (3)

where $\mathcal{L}(\mathbb{R}^2)$ is the Orlicz space associated to the function $\phi(s) = \mathrm{e}^{s^2} - 1$

• A natural question to ask then is: what is the critical nonlinearity in dimension *d* = 2?

A natural model to investigate in 2D is

$$\begin{cases} u_t - \Delta u = \pm u(e^{u^2} - 1) & \text{in} \quad \mathbb{R}^2 \\ u(0) = u_0 \end{cases}$$
(4)

 GoaL: Existence and/or uniqueness of local/global solutions to (4) when the data is no longer in L[∞].

• The largest Lebesgue type space in which the equation is meaningful in the distributional sense is of Orlicz kind.

• Ruf & Terraneo [2002]: Local existence for small data in Orlicz space.

Presented by: Mohamed Majdoub Energy critical heat equation ...

Main results

Presented by: Mohamed Majdoub Energy critical heat equation ...

< □ > < □ > < □ > < □ > < □ > .

2

Good *H*¹- **Theory**

Theorem

Let $u_0 \in H^1(\mathbb{R}^2)$.

- There exists a unique solution u to (4) in $C([0, T], H^1)$.
- 2 If $f(u) = -u(e^{u^2} 1)$, then the (above) solution is global.
- 3 If $f(u) = u(e^{u^2} 1)$, $u_0 \neq 0$ and $J(u_0) \leq 0$, then the (above) solution blows up in finite time.

Here the energy J is given by

$$J(u(t)) \stackrel{\mathsf{def}}{=} \frac{1}{2} \|\nabla u(t)\|_{L^2(\mathbb{R}^2)}^2 - \int_{\mathbb{R}^2} F(u(t)) dx,$$

where

$$F(u)=\int_0^u f(v)\,dv\,.$$

・ロト ・回ト ・ヨト ・ヨト

Nonuniqueness

Theorem

Let B_1 be the unit ball of \mathbb{R}^2 . There exists infinitely many $u_0 \in \mathcal{L}(B_1)$ such that the Cauchy problem

$$\begin{cases} u_t - \Delta u = u(e^{u^2} - 1) & in \quad B_1 \\ u(0) = u_0 & in \quad B_1 \\ u_{|\partial B_1} = 0 & for \quad t > 0 \end{cases}$$
(5)

・ロト ・回ト ・ヨト

has at least two solutions.

Background material

Presented by: Mohamed Majdoub Energy critical heat equation ...

•
$$\|\mathrm{e}^{t\Delta}\varphi\|_{L^{\gamma}} \leq C t^{rac{1}{\gamma}-rac{1}{\beta}} \|\varphi\|_{L^{\beta}}, \ t>0, \ 1\leq eta\leq\gamma\leq\infty.$$

• Using Duhamel's formula for the equation $u_t - \Delta u = F(t, x)$, we deduce

$$\begin{aligned} \|u\|_{L^{\infty}_{T}(H^{1})} &\leq C\Big(\|u(0)\|_{H^{1}} + \|F\|_{L^{1}_{T}(H^{1})}\Big) \\ \|u\|_{L^{\infty}_{T}(H^{1})} &\leq C\Big(\|u(0)\|_{H^{1}} + \|F\|_{L^{1}_{T}(L^{2})} + T^{1/2} \|\nabla F\|_{L^{\infty}_{T}(L^{1})}\Big) \\ \|u\|_{L^{\infty}_{T}(L^{\infty})} &\leq C\Big(\|u(0)\|_{L^{\infty}} + \|F\|_{L^{1}_{T}(L^{\infty})}\Big) \end{aligned}$$

・ロト ・回ト ・ヨト ・ヨト

In order to control the nonlinear part in $L_t^1(H_x^1)$, we will use the following Moser-Trudinger type inequalities.

•
$$\int_{\mathbb{R}^2} \left(e^{\alpha |u(x)|^2} - 1 \right) dx \leq C_{\alpha} ||u||_{L^2(\mathbb{R}^2)}^2 \text{ whenever } 0 \leq \alpha < 4\pi$$

and $u \in H^1$ satisfying $||\nabla u||_{L^2} \leq 1$. The above inequality is false for $\alpha \geq 4\pi$.

• If we require $\|u\|_{H^1} \leq 1$ rather than $\|
abla u\|_{L^2} \leq 1$, we obtain

$$\sup_{\|u\|_{H^1}\leq 1}\int_{\mathbb{R}^2}\Big(\mathrm{e}^{4\pi|u(x)|^2}-1\Big)dx<\infty\,.$$

イロト イポト イヨト イヨト

The above property is false for $\alpha > 4\pi$.

Definition

Let $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ be a convex increasing function such that

$$\phi(0) = 0 = \lim_{s \to 0^+} \phi(s), \quad \lim_{s \to \infty} \phi(s) = \infty.$$

The Orlicz space L^{ϕ} is defined via the Luxembourg norm

$$\|u\|_{L^{\phi}} = \inf \left\{ \lambda > 0, \quad \int_{\mathbb{R}^d} \phi\left(\frac{|u(x)|}{\lambda}\right) \, dx \leq 1
ight\}.$$

•
$$\phi(s) = s^p, 1 \le p < \infty \Longrightarrow L^{\phi} = L^p.$$

•
$$\phi_{\alpha}(s) = e^{\alpha s^2} - 1 \Longrightarrow L^{\phi_{\alpha}} = L^{\phi_1} = \mathcal{L}.$$

イロン イヨン イヨン イヨン

We shall use the following properties of Orlicz spaces.

• If $T: L^1 \to L^1$ with norm M_1 and $T: L^{\infty} \to L^{\infty}$ with norm M_{∞} , then $T: L^{\phi} \to L^{\phi}$ with norm

$$M \leq \kappa_{\phi,d} \sup(M_1, M_\infty),$$

where $\kappa_{\phi,d}$ depends only on ϕ and the dimension d.

• For any
$$p\geq 2$$
, $\mathcal{L}(\mathbb{R}^2)\subset L^p(\mathbb{R}^2)$ and we have

$$\|u\|_{L^p} \leq \left(\Gamma(\frac{p}{2}+1) \right)^{\frac{1}{p}} \|u\|_{\mathcal{L}}$$

・ロン ・回 と ・ ヨ と ・ ヨ と

Recall the following parabolic regularizing effect due to Brezis-Cazenave that we will use to obtain a locally (in time) bounded solution to (4) with singular data. Consider the following linear heat equation with potential

$$\begin{cases} u_t - \Delta u - a(t, x)u = 0 & \text{in} \quad \Omega, \\ u = 0 & \text{on} \quad \partial \Omega, \\ u(0) = u_0, \end{cases}$$
(6)

where Ω is a smooth bounded domain of \mathbb{R}^2 .

Theorem (Brezis-Cazenave)

Let $0 < T < \infty$, $\sigma > 1$, and let $a \in L^{\infty}([0, T]; L^{\sigma})$. Given $u_0 \in L^r$, $1 \le r < \infty$, there exists a unique solution $u \in C([0, T]; L^r) \cap L^{\infty}_{loc}([0, T]; L^{\infty})$ of equation (6).

Sketches of the proofs

Presented by: Mohamed Majdoub Energy critical heat equation ...

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Local existence in H^1

• We decompose the initial data $u_0 \in H^1$ as $u_0 = u_{0,N} + u_0^N$ (N large)

$$= H^1 \cap L^\infty +$$
small in H^1

• We solve the IVP with data $u_{0,N}$ to obtain a local solution v.

• To recover a solution of our original problem we solve a perturbed equation satisfied by w := u - v with small data u_0^N .

Unconditional uniqueness

Let $u, v \in C([0, T]; H^1)$ be two solutions to (4) with same data u_0 and set w := u - v. Then

$$w(t) = \int_0^t e^{(t-s)\Delta} a(s)w(s) \ ds,$$

where the potential a is given by

$$a(t,x) := \begin{cases} & \frac{f(u)-f(v)}{w} & \text{if } w \neq 0 \\ & & \\ & f'(u) & \text{if } w = 0 \end{cases}$$

Remark that $w \in L^{\infty}(0, T; L^q)$ for any $2 \le q < \infty$.

・ロン ・回と ・ヨン ・ヨン

To prove that $w \equiv 0$ on [0, T], we use the following lemma which can be seen as an extension to dimension two of Brezis-Cazenave's results about dimension $d \ge 3$.

Lemma

Let
$$a \in \mathcal{C}([0, T]; L^{p}(\mathbb{R}^{2}))$$
 and $u \in L^{\infty}((0, T); L^{q}(\mathbb{R}^{2}))$ with $2 \leq q < \infty, 1 < p < \infty, \frac{1}{p} + \frac{1}{q} \neq 1$, and such that

$$u(t) = \int_0^t \mathrm{e}^{(t-s)\Delta} a(s) u(s) ds, \quad 0 \leq t \leq T.$$

Then u = 0 on [0, T].

A crucial fact here is that the potential is continuous in time. We don't know how to extend this lemma to the case when the potential is only L^{∞} in time.

Presented by: Mohamed Majdoub

Energy critical heat equation ...

 The uniqueness follows once we prove that *a* ∈ C([0, T]; L^p(ℝ²)) for some 1

• This basically follows from the fact that

 $u\in \mathcal{C}([0,\,T];\,H^1(\mathbb{R}^2)) \quad \Longrightarrow \quad \mathrm{e}^{u^2}-1\in \mathcal{C}([0,\,T];\,L^1(\mathbb{R}^2))\,.$

・ロン ・回と ・ヨン ・ヨン

Global existence

Here we assume that
$$f(u) = -u (e^{u^2} - 1)$$
.

Proposition

Assume that $u_0 \in H^1(\mathbb{R}^2)$ and $u \in C([0, T); H^1(\mathbb{R}^2))$ solution to (4). Then

$$\|u(t)\|_{L^{\infty}} \leq \sqrt{2} \|u_0\|_{L^2}, \qquad 0 < t < T.$$

We use the level set energy inequality for $c_k := M(1 - 2^{-k})$, where M > 0 will be chosen later. This idea was used by Caffarelli-Vasseur (Annals of Mathematics (2010)) for the quasi-geostrophic equation.

 This leads to the following energy inequality for the level set function u_k ^{def} = (u − c_k)₊:

$$\frac{d}{dt}\int_{\mathbb{R}^2}|u_k(t)|^2\,dx+2\int_{\mathbb{R}^2}|\nabla u_k(t)|^2\,dx\leq 0\,.$$
 (7)

• Let $t_0 > 0$, and denote by $T_k \stackrel{\mathsf{def}}{=} t_0(1-2^{-k})$ and

$$U_k \stackrel{\text{def}}{=} \sup_{t \geq T_k} \left(\int_{\mathbb{R}^2} |u_k(t,x)|^2 dx \right) + 2 \int_{T_k}^{+\infty} \int_{\mathbb{R}^2} |\nabla u_k(t,x)|^2 dx dt \, .$$

• By integrating (7) in time, and using some interpolation estimates, we obtain finally

$$U_k \leq A C^{k-1} U_{k-1}^{\frac{\alpha}{2}},$$

where

$$A \stackrel{\text{def}}{=} 2^{\alpha/2+4} M^{-\alpha} t_0^{-1} \|u_0\|_{L^2}^2, \quad \text{and} \quad C \stackrel{\text{def}}{=} 2^{\alpha+1} .$$

• Taking
$$\alpha > 2$$
 and $M \stackrel{\text{def}}{=} 2^{\frac{\alpha^2 + 10\alpha - 12}{2\alpha(\alpha - 2)}} t_0^{-\frac{1}{\alpha}} \|u_0\|_{L^2}$, we get
$$\lim_{k \to \infty} U_k = 0.$$

• The conclusion follows by letting $\alpha \to \infty$.

・ロト ・回ト ・ヨト ・ヨト

Э

Blowing-up solutions

Claim: If $u_0 \in H^1 \setminus \{0\}$ with $J(u_0) \leq 0$, then $T^* < \infty$.

The proof is quite standard. Set $y(t) \stackrel{\text{def}}{=} \frac{1}{2} \int_0^\tau ||u(s)||_{L^2}^2 ds$. Since $\left(uf(u) - 2F(u)\right) \ge \varepsilon F(u)$ for some $\varepsilon > 0$, we find that $y(t)y''(t) \ge (1+\eta)(y'(t))^2$ for some $\eta = \eta(\varepsilon) > 0$.

The fact that this ordinary differential inequality blows up in finite time ensures the claim.

・ロン ・回 と ・ ヨ と ・ ヨ と

Nonuniqueness

The proof is done in four steps. Set $\Omega \stackrel{\text{def}}{=} B(0,1) \subset \mathbb{R}^2$.

Step 1: We construct a singular solution Q to

$$\begin{cases} -\Delta Q = f(Q) & \text{in} & \Omega, \\ Q = 0 & \text{on} & \partial\Omega, \\ Q(0) = \infty, & \text{and} & Q > 0. \end{cases}$$

We look for singular solutions which are radially symmetric. Letting $|x| \stackrel{\text{def}}{=} r = e^{-t}$, $y(t) = Q(e^{-t})$, we obtain $\begin{cases} -y''(t) = e^{-2t}f(y(t)), & t \ge 0\\ y(0) = 0, & y(\infty) = \infty. \end{cases}$

To solve the above problem, we proceed as follows.

• For any $\alpha > 0$, we consider the Cauchy problem

$$\left(\mathcal{P}_{lpha}
ight)\left\{egin{array}{ll} -y^{\prime\prime}(t)=\mathrm{e}^{-2t}f(y(t)), &t\geq 0\ y(0)=0, &y^{\prime}(0)=lpha, \end{array}
ight.$$

and the associated elliptic problem

$$(\mathcal{E}_{\alpha}) \left\{ egin{array}{ll} -\Delta u_{lpha} = f(u_{lpha}), & 0 < r < 1 \ u_{lpha}(1) = 0, & u_{lpha}(0) = y_{lpha}(\infty). \end{array}
ight.$$

• Elliptic regularity + Existence and uniqueness of classical radial solution $\implies \exists ! \alpha_0 \text{ s.t. } \lim_{t \to \infty} y_{\alpha_0}(t) = \ell \in (0, \infty).$

Set

$$T(\alpha) = \sup \left\{ s \ge 0; \quad y_{\alpha} > 0 \text{ on } (0, s) \right\}$$
$$I = \left\{ \alpha > 0; \quad T(\alpha) < \infty \right\}$$
$$J = \left\{ \alpha > 0; \quad \alpha \notin I \right\}$$

The end of the proof of existence consists on showing that J is a non trivial interval.

・ロト ・日本 ・モト ・モト

Step 2: We prove that

•
$$-\Delta Q = f(Q)$$
 in $\mathcal{D}'(\Omega)$.

•
$$Q \in \mathcal{L}(\Omega)$$
.

•
$$\lim_{r\to 0} \|Q\|_{\mathcal{L}(|x|< r)} = 0.$$

・ロ・・ (日・・ (日・・ (日・)

The above classical solution in $\Omega \setminus \{0\}$ is extendable to a distribution solution in Ω thanks to the following technical lemma.

Lemma

Let $u \in C^2(\Omega \setminus \{0\})$, $u \ge 0$, such that $-\Delta u = f(u)$ in $\Omega \setminus \{0\}$. Then

1
$$f(u) \in L^1(\Omega)$$
.
2 $If(-\log r)^{\alpha}u^q \in L^1(\Omega)$ for some $\frac{\alpha}{q-1} > 0$, then
 $\Delta u + f(u) = 0$ in $\mathcal{D}'(\Omega)$.

This lemma can be seen as an extension to dimension two of Ni-Sacks' result.

イロト イヨト イヨト イヨト

Step 3: We take *Q* as an initial data

$$\begin{cases} u_t - \Delta u = f(u) & \text{in } \Omega\\ u(0) = Q, \ u(|x| = 1) = 0 \end{cases}$$
(8)

・ロン ・回 とくほど ・ ほとう

• We prove that (8) has a local solution $u \in L^{\infty}(\mathcal{L}(\Omega))$.

 Since the potential e^{u²} − 1 is better than L¹, we can apply Brezis-Cazenave's result about regularization effect. This leads to u ∈ L[∞](L[∞](Ω)).

Step 4: Now we are able to conclude.

$$u_0 = Q \longrightarrow v(t, x) = Q(x)$$

 $u_0 = Q \longrightarrow u(t, x) \in L^{\infty}(L^{\infty}(\Omega))$

As $Q(0) = \infty$, we find $u \neq v$.

3

Concluding remarks

Presented by: Mohamed Majdoub Energy critical heat equation ...

< □ > < □ > < □ > < □ > < □ > .

 We believe that there is no existence in H^s for s < 1. (Work in progress)

 The blow-up analysis can be refined for positive initial energy. (Work in progress)

イロン イヨン イヨン イヨン

Thank You

Presented by: Mohamed Majdoub Energy critical heat equation ...

・ロト ・日本 ・モト ・モト