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ALMOST PERIODIC FUNCTIONS ASSOCIATED WITH
A SINGULAR DIFFERENTIAL OPERATOR ON (0,x)

HoucINE CHEBLI

ABSTRACT. We give a characterisation of almost periodic functions, associated with
a class of singular differential operators L on (0,00) including Bessel and Jacobi
operators, as a closure in the sense of uniform convergence of finite sum of the form
Tk akle(Ae)Péa, (2) where 65, are special eigenfunctions of L and (A )is the Jost-
function associated with L.

1. INTRODUCTION

Many of the ideas and methods of classical Fourier analysis on the real line have
been interesting and fruitful when studied in other contexts where at least some of
the useful structures from the classical case persist.

A particular case is the harmonic analysis associated with a Sturm-Liouville
operator. In that case, the underlying tool has been the generalized translation
operators [Cs] which have proved useful in specifying the class of Sturm-Liouville
operators suitable for carrying out the analogy with classical harmonic analysis.

Here we will direct our attention to generalized almost periodic (g.a.p.) func-
tions associated with Sturm-Liouville operators. The foregoing way of introducing
the notion of g.a.p. functions goes back to Delsarte [D] and after him Levitan
[Lev]. However, an important difference between the two papers strikes the atten-
tive reader. While Levitan limits his concern to regular Sturm-Liouville operators
and a characterisation of g.a.p. functions as a closure, in the sense of uniform
convergence on the whole real line, of finite sum of the form ¥ apv(z, Ay) where
v(x, Ay ) are special eigenfunctions of the Sturm-Liouville operator in consideration,
Delsarte deals with a special but singular differential operator, namely the Bessel
operator and gives a more complete study of g.a.p. functions.

As our approach here is similar to that of Delsarte and in order to give some
motivations, we start with a short dicussion of Delsarte’s results,

The general solutions u(x,t) = f(x +1) 4 g(x — t) of the wave equation u,, —
gy = 0 set off the importance of the role of the motion group on the real line. In
particular, if [ and g are Bohr-almost periodic (B-a.p.) functions so is t — u(z,1)
uniformly with respect to #. This suggests the following generalisation: Let L be a
linear second order differential operator and let u be the solution of

2
Leu— ?)t—: =0, u(z,0)= f(z), %:"(1.0) = y(t)
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2 GENERALIZED ALMOST PERIODIC FUNCTIONS

What are the conditions on the data f and g in order that { — u(z,t) be a B-a.p.
function uniformly with respect to z 7 In this case we will say (with Delsarte) that
f and g are L-almost periodic (L-a.p.) functions.

Delsarte has investigate this question in the particular case where L is the Bessel
operator

20+ 1
Lv=v"+4 —+t='.
r

z>0
with —3 < a < . The theory he built is in many settings analogous to Bohr’s
one. The role of the exponentials is played by the modified Bessel function

k 2°T(a + 1)
Ja(Az) = )
and the motion group is replaced by the generalized translation operators associated
with the Bessel operator [D]. Moreover Delsarte obtains a compactness property,
series expansions in terms of (j,(Azz)) and prehilbertian structure in the space of L-
a.p. functions. A fundamental role is played by the Mehler integral representation
of jo(Az) in terms of the cosine function [W], namely

. _ A’(a+1)
Ja(Az) T+ D)
The transformation operator defined by this formula is in fact a transmutation
operator which allows one to study the Bessel operator in terms of the simpler
operator & and thus the L-a.p. functions in terms of even B-a.p. functions.
Furthermore, one can derive the orthogonality property of (jq(Axz)), A > 0 from
that of (cos Arx). At this stage the Fourier Bessel transform plays a decisive role.

In this paper we will work with differential operators of the form
N@a)

Alx)

where A will have properties modeled on L(A) being the radial part of the Laplace
Beltrami operator on a non compact riemannian symmetric space of rank one [H].
The purpose is two-fold. On one hand, we have the feeling that it throws a certain
amount of light on the results obtained by Delsarte and makes clear what is general
and what is special about the Bessel operator. On the other hand, it leads to set off
two distinct classes of Differential operators, one including Bessel operator and the
other one including Jacobi operator, for which the theory can be extended. The
distinction between the two classes is related to the fact that the corresponding
spectral measures have distinct behaviours at the origin A = 0.

The balance of the article is organized as follows: The next section contains some
needed properties of solutions of L(A)u—A%u = 0. Of particular interest are integral
representations which will be established by the use of Riemann’s method. This
enables us to derive precise asymptotic behaviour of the Harish Chandra ¢ function
(intimately related with the Jost function in scattering theory). In section 3 we
define L(A)-a.p. functions and set down some of their simple properties. Section
4 is devoted to the proof of the compactness property and the series expansions of
L(A)-a.p.functions. The prehibertian structure is provided in section 5.

Ja(Az), A>0

T
=2 f (2% — 1%)"~ ¥ cos Atdt
0

L(A)u=u" +
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2. THE DIFFERENTIAL OPERATOR L(A)
2.1 Definitions and notations. Let L(A) be the differential operator defined by

L(Ayu=1u" + %u" z>0

where the function A satisfies the following assumptions
(C) A Convexity property: we assume that A is increasing on (0,00), A(0) =0
and A’/A is decreasing, we then denote by 2p its limit at infinity

- A'(z)
W r—oo A(z)

This hypothesis ensures the positivity of the generalized translation operators as-
sociated with L(A) [C,].

(Rg) Regularity in the neighbourhood of zero. We assume that A is of the form

A(z) =2 A(z), a> —%

where A is an even-C™ function and A(z) > 0 for z > 0. So without loss of
generality we assume A(0) = 1.

(Roo) Regularily in the neighbourhood of infinity. Two kind of growth properties
are made according as p = 0 or p > (. More precisely we assume

for & — oo,

Allz) { 2p+ Dy(2), ifp>0
A(x) ~ | 22t 4 Do(z), if p=0.

where D, and Dy are assumed to satisfy, for any xq > 0

(=] o
f 1D;(8)] dt < o, / UD(t)|dt < 00,  j=0,5=p

o To

In the case where p > 0 we will assume, without loss of generality, that A(z) ~
e??* (2 — o0).

Typical examples are the Bessel and Jacobi operators for which we have respec-
tively

1
A(z) = 2%t o> —g = 0

A(z) = 2% (cosh z)**! (sinh 2)***' | a >8> —%, p=(a+8+1)>0

We shall be concerned with the asymptotic behaviour of solutions of the following
differential equation

(1) L(Ayu+ (A +p)u=0, AeC
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Assumption (R,) shows that z = 0 is a regular singular point for (1); furthermore
(1) has exactly one solution (regular solution), which will be denoted ¢,, satisfying

ax(0)=1, ¢5(0)=0
So, (2, A) — @4(z) is an even function on B x C, C°° with respect to z and analytic
with respect to A.

In order to analyze the behaviour of the solutions of (1) near infinity, we observe
that the substitution w = v/Au transforms (1) into one of the following equations

2-1/4 2
w”—(ax—g/JFQu(l‘)) w+ Nw=0

(2°) : ; . if p=0
w(z) = $D3(=) + 3 D4(x) + 12 Do)
and
v —g(z)w+ Nw=0
(2%) - - if p>0
4p(x) = 7D3(x) + 5D} (x) + pD,(2)

Assumptions (Rgp) - (Rs) show that ¢g is an even continuous function on R,
while g, behaves like (o — 1/4)z~2 near z = 0 and for any xy > 0, we have

f to)ldt <o j=0,j=p

o

In the two cases, one can uses Langer’s result [Lang] to prove the following

Proposition 2.1. There exist two positive constants No and Ny such that
(1) For | Aa|< Ny

VA(z)¢x = 22t [jo(Az) + O(a?)]
(VA()ox(2)) = 2+ ja(A2)) + 2°H20(1)

(2) For| Az |> N,

(2.3)

VA@)6x = 274 jo(A2) + 47773 [¢20(1) + e 0(1)]

2.4) , ,
( (VA[2)8x(2)) = (273 ja(Az)) + A7~ [¢220(1) 4+ =% 0(1)]

(3) There exists a constant N+ such that for all A\ € C and 2 > 0

a+d
V. el SAlz i * U stay)
(25) VAR)6r(2) < Nae ( o A|z) e
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Proof. Use the method of variation of constants and the behaviour of Bessel func-
tions. For more details one can see ([C»] or [T]). O

On the other hand, for any A # 0, equation (1) has unique solutions which will
be denoted by ®4, (scattering solutions), such that when z — o

We(z,A)=14 o(:"l)

2.6 VA(2)®15(z) = e Wy(z,)), and
( ) ( ) i«\( ) i(z ) an { w;‘I“‘) - 0(1‘3_1)

For A = 0, the asymptotic behaviour is different according as p = 0 or not.
More precisely, equation (27) has two linearly independent solutions, which will be
denoted by VA® and VAV, such that

V’E(:)@(:) —1=o(z7!), (\/ﬁ(x)@(:))' =o(z~")
@27) (2 — )

VA(2)¥(z) = O(2), (\/.Z(z)w(x))' =0(1)

whereas equation (2°) has two linearly independent solutions, which we denote
again by v/A® and VAW, whose behaviours for large z are given by

(2.7 VA(z)®(z) = 2*HE W, (2), Jim Wy(z) =1
(2.7%) (\/,Z(a:yl»(.r))' = (a + %)z"-%zl(x). Jim Zy(2) =1

2= I Wy(2), Jim Wa(z) =1, ifa#0

2.73 A(z)¥(z) =
(275 VA@E)¥a) {\/Eln:cVz(a:)n Jlim Va(a) =1, ifa=0

. ¥ €T
- r—00 a(a"] o 1; ifa = 0

The behaviour of the scattering solution ®, for large |A| both on the real axis
and in C* is going to play an important role in the further development. For doing
it, again we have to distinguish the cases p > 0 and p = 0.

Proposition 2.2. If p > 0, then for every z > 0 the function A — ®5(z) 15 a
holomorphic function in {A € C | Sm()A) > 0} and continuous for Im(A) > 0.
Furthermore we have, as | Az | goes to infinity,

VA(@)Psa(z) = X7 [1 o O(ﬁ)]

(2.8)
(VAZ)®sa(z)) = Hide®?* [1 +0( A_l:.':)]
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Proof. Combining the equation (27) with the boundary condition (2.6), and using
the method of the variation of constants, we obtain the Volterra integral equation

(2.9) \/Iq'(z}cm(:)n“-w/ w%(n\/ﬁummm

- A

Using the bound
sin z |z ~
<C Bl v2eC
RSk o
where C' is an appropriate constant, we see that the method of successive approxi-
mations can be performed to give the desired result. O

In order to study the case p = 0, we introduce the normalized Hankel function
H(Az) = \/ge%l°+%’(,\:)‘sﬁg“(,\z)

HY being the Hankel function of order a and of the first kind. It has the following
behaviour near the origin and at infinity

= 30(a)eF@-1 (z/2)"° | ifa>0

HI(z) =~ &2, HIP() ~ ;
R F @) % /zlnz, ifa=0

where In z is taken to be the branch on C — iR_ [W]. On that point it is useful to
observe that there is a constant C such that for any z # 0 and a > —(1/2)

~lal+4
) || o192
(2.10) H ()| < C (1 s lzi)

Proposition 2.3. If p =0, then

(1) for every = > 0 the funcltion A — )\‘%a(A}QA(m) s a holomorphie function
in {A € C| (X)) > 0} and continuous for I(A) > 0 where a(A) s defined

by
e, if a#0
“(’\)"{(m,\)-l, ifa=0

(2) For each A # 0 with SA > 0, ¢ — 2~ Ya(z)VA(2)®x(x) s a continuous
function for x > 0.
(3) For A € C, with I\ > 0, we have the bounds

M|3 ~taih —QAr
(2.11) lﬂ(xm(:HSC(m) e

2.12) [VA(z)® o) < 0 () one [T yiae
Q1) VAE®E) - HPODI < (o) e [Tt

e [Alz —lal+% e-SAx oo
(13) VAR®E -HO00 < (o) ), el
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Proof. Combining the equation (2°) with the boundary condition (2.6), and using
the method of the variation of constants, we obtain the Volterra integral equation

VAE)@A@) = HP )~ [ GOm0V AW 0)

where G is given by

i

5 (HD A2 HD (=Mt) = HOOHD (- A2))

From the inequality (2.10) we derive for @ <t the following bound

' =1 |’\|t ﬂ+%( |A|‘T —0+% | ImA|(x—t)
Gr@olsen (T (o)

where C is an appropriate constant: we see again that the method of successive
approximations can be performed to give the desired results. O

Remark 2.4. 1t should be noted that the bound (2.13) gives us

1

(2.14) VA(2)®)(z) = e [1 +0(3

So (2.8) holds in the two cases p > 0 and p = 0.
®, and ®_, are two linearly independent solutions of (1), so ¢, is a linear

combination of both
Ox = c(A)Pr + c(—A)P_x

Using (2.7) and the fact that the wronskian [®), ®_,] is independent of the variable
2, we have

[@x,®_5] = —2iX, and then [@y, ®_,] = —2iXe(N).

From the above two propositions we derive the asymptotic behaviour of the ¢
function

Corollary 2.5. In the case p = 0 the function A — a(M)A3c()A) s continuous on
{A € T | Sm(A) < 0} whereas in the case p > 0, A — Ae(A) s continwous on
{A e C|Sm(N) < 0}.

In both cases ¢(A)~" behaves like \**+3 as || goes to infinity.

Thus the most important difference between p > 0 and p = 0 is that the function
¢ has distinct behaviours at (. However it has the same behaviour at infinity in
both cases, p = 0 and p > 0.

Remark 2.6. In the case p > 0 the function A — Ac(\) vanishes at A = 0 only if ¢q
and @y are linearly dependent. In this case the function ¢ is continuous on [ and
the function & — /A(x)¢o(x) is bounded on [0,00[. Hence it follows that there
exists a constant M such that

(2.15) VA(@)|ga(x) < M, VAERVa € [0,00]
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Otherwise there exists ¥ # 0 and a continuous function h on B such that
(2.16) e(A) = }+ h()) and /A(z)éo(z) = O(z), (x — )

Remark 2.7. The function ¢ is known as the Harish Chandra c-function. Clearly
it plays a very fundamental role for the operator L(A); indeed |c(A)|~? represents
the density of the spectral measure of L(A) realized as an unbounded self adjoint
operator in the Hilbert space L?(A(z)) of square integrable functions on (0, cc)
with respect to A(z)dz (see [C3]).

2.2 Product formula and integral representations. It has been shown in [C,]
(see also [C3]) that, under the convexity property (C) (which we have not used yet)
(1) Product formula. For every z # 0, y # 0 there exists a non negative even
and continuous kernel : — T(z,y,z) supported in [|z - y|, 2 + y] whose
integral with respect to the measure A(z)dz is less than or equal to one and

such that
-+

¥
(2.17) Sl = / 6A(2)T(z, v, 2)A(2)dz, VA € C

==yl
(2) Mehler representation. For every x # 0, there exists a non negative even
kernel = — M (xz,z) supported in [—z, 2] such that

(2.18) / M(z,z)dz<1 and ¢,(z) =/ cos Az M(z,z)dz, YAe C
0 0

(2.5) shows that z — @,(2) is bounded for every complexe A such that
[SA] < p; then using (2.17) we see that

[oa(z) [< 1, VAEC, |Sm(A) [<p

(2.19) |6x(2) | < do(z) |<1, VAER

In [C-F-H] one can find another integral representation of Sonine type for ¢, but
we do not discuss this question here. However, we are interested in an integral
representation of ®,. In the case p > 0, we can apply a convenient Marchenko’s
procedure [A-M] to derive the following

Proposition 2.8. Assume that p > 0; then for every complex N with Im(\ > 0)
the solution ®) has the form

(2.20) VA(@)®a(z) = e + /m Ky(z,t)e™dt, z>0

where the kernel K,(z,1), defined for 0 < & <1, has continuous partial derwatives
and salisfies

|K,(z,1)] < %o'g(-x—-;-—t)e"'(r]. [ |K y(z,t)|dt < ay(z)e?F)
(321 © K 1 " ~
/ [—at—-(::,t)]dt < Eo{,(:)+ ay(z)oy(z)e

Incidentally, this yields a new proof of proposition 2.2 when p > 0. Unfortu-
nately, we cannot apply Marchenko’s method in the case where p = (0 because of
the slow decay of the function ¢5. In order to address this difficulty Riemann’s
method seems to be the most promising way, but we need more hypotheses than
(R.); we refer to ( [G-M]), for further details.
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2.3 Orthogonality property of ¢,. We are going to show that the regular so-
lution ¢y, satisfy for A > 0, an orthogonality property analogous to that satisfyed
by circular functions. More precisely, we have

Theorem 2.9. For every A > 0 and p > 0
AP, if A= p

o L
lim _A oa(2)pu(2)A(2)de = { 0, fA#

R—oo R

Proof. We have

VA@)ga(x) = e(A)VA(2)Pa(2) + c(—=A)/A(x)P_yx(2)

Thus, the proof is an immediate consequence of (2.8) or (2.14). O

Remark 2.10. The asymptotic behaviour of ¢ and ¢ show that in general

R
l] ox(x)go(z)A(x)dz, A >0
R Jo
has no limit when R — oc, whilst the limit

L %

R]l_l.l‘;lm E/o di(z)A(x)da

is equal to infinity. Indeed, this is the case for the Bessel operator (A(z) = a%¢+1)
or the Jacobi operator (A(z) = sinh”**!(2)).

3. L-ALMOST PERIODIC FUNCTIONS

3.1 The operators M and (T%), s > 0. Let C, be the space of even and contin-
uous functions on B endowed with the uniform norm ||.||. Having in mind the
product formula (2.17) and the Mehler representation (2.18) for ¢, we define the
operators 7% and M for every f € C. by

4
(3.1) T f(z) = /| ‘f(z)T(:r,s, z)A(z)dz and T° = Id
B von _ f Jo F(T)M(z,T)dr, if2>0
61 MU =M@ ={ o s

Proposition 3.1. The operators M and (T*), s > 0, are bnear and continuous
from C. into ttself and for any f € C.

(3.3) M flleo < 1flles and [IT*flloe < [|flloc, s 20

Proof. That Mf € C, and T* f € C. for every f € C, is a consequence of [D-1]
(pp 62-64), see also [Tr]. The inequalities (3.3) are a consequence of (2.17) and
(2.18). O
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Remark 3.2. We point out that M intertwines the differential operators L(A) 4+ p*
and the second differentiation operator D2, that is

(34) (L(A)+p*)M = MD?

On the other hand the product formula (2.17) for ¢, can be connected to that
of cosine function, via the operator M, namely for every A >

(3.5) da(2)op(s) = %Mx{Ms[cos/\('rJr v) +ecos A(T — v)]}

where M acts with respect to v and M, acts with respect to .

3.2 The space By. Having in mind remark 2.10, we introduce the space By of
even Bohr almost periodic functions F' whose means are equal to 0

R
lim/ Fla)de =0
0

R—ro

The Fourier exponents of such functions are thus strictly positive.
Let By, be the image of By under the operator M

fEBL — EFJ E.Bulf:M[F}J
Definition 3.3. A function f is said to be L-almost periodic (L-a.p.) if it belongs
to Br.
Le f € C. be such that f = M(F;) with F; € C. and introduce the function

(3.6) Uy (2,t) = %.Mr[ﬁ}{t +7)+ Fy(t — 1))

the operator M acting on the variable 7.

Proposition 3.4. The function Fy belongs to By if and only iof the function Wy (x,.)
does, uniformly with respect to w.

Proof. It is clear that if W;(x,.) belongs to By, uniformly with respect to z, so
does Fy(t) = Ws(0,¢). Assume now that Fy € By. Since M is a bounded operator,
the function ¢ +— Wy (x,t) is an even Bohr almost periodic function uniformly with
respect to x; moreover, the relation

1 R 1 T 1 R
‘E/o 'D;(a:,t}dt:afﬂ (Ej.;‘, [F!(t+r)+Ff(t—T)]di) Mz, 7)dr

shows that the mean of W;(x,.) is equal to 0. O

Remark 3.5. Using (3.4) one can prove that ¥y is a distribution solution of the
Cauchy problem

g, &

(La(A) + ") ¥) = 55

So proposition 3.4 says that f belongs to By if and only if the distribution solution
of the above Cauchy problem is B.a.p in the variable ¢t and uniformly with respect
to a, the mean of which is equal to 0.

V=0, ¥(z,0)=f(z)
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Example 3.6. Every function p of the form

(3.7) p(z) =) Badr(2). Ba€C, >0
n=1

is L-a.p. and we have p = M(P,) where

Py(z) = Bncos(Anz)

n=1

Definition 3.7. A spherical polynomial is any function of the form (3.7).

Theorem 3.8. Let f be a function belonging to By. Then

(1) For every ¢ > 0 there ezists a spherical polynomial p such that || f—p|lo. < €.
(2) For every s > 0, T*(f) belongs to By and

(3.8) T*(f)(z) = Mz[¥y(s,7)]
Proof. (1) Since f € By, there exists F; € By such that f = M(Fy). Thus there
exists a trigonometrical polynomial P without constant term such that
1Fy = Pllec <€
Let p = M(P); this is a spherical polynomial and we have
lf = Pllec < IFy = Pl < €
(2) Let p= M(P) be a spherical polynomial. Using (3.7) we get

T*(p)(z) = M [¥y(s,7)]

Then assertion (1) and the boundedness of T and M show that
Vf€Br, T(f)(x)=My[¥(s )

Assertion (2) is thus a consequence of proposition 3.4. O

4. SPHERICAL FOURIER SERIES EXPANSIONS AND
COMPACITY PROPERTY OF L-A.P.FUNCTIONS

Spherical Fourier series expansions. Let f be an L-a.p. function; that is
f = M(Fy) where Fy € Bg. Let (A,) be the Fourier exponents of Fy and (3,) be
its Fourier coefficients. We have the classical relations

. & PR
Ba _Rli-n;o E[o Fy(z) cos(Ayz)dz

2_ g £ 2
1ol = fim 7 [ 1 o)de

According to the usual conventions, )" 8, cos A,z is called the Fourier series of F;
and we write

Fr ~ Zﬁn cos Az
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Definition 4.1. We will say that (A,) and (f,) are respectively spherical Fourier
exponents and spherical Fourier coefficients of f and we write

[(2)~ ) Buda, (@)

This definition is justified by the following

Theorem 4.2 (The mean-value theorem). Assume p >0 orp =0 and —5 <
a < 1. Let f be an L-a.p. funclion whose spherical Fourier exponents and spherical
Fourter coefficients are respectively (A,) and (3,). Then for every A >0

28nle(A)l?, if A= A, for somen

. &
Rh_ng.q -}-'—Z/U S(x)pa(z)A(x)de = { 0, ifA# A\, Vn

Proof. Since F; is in By, for every € > 0 there exists a trigonometric cosine poly-
nomial, without constant term P = Z:?:l ¥n cos(A,z) such that
(4.1) |Fy — Plloo <€

Let p = M(P), using the orthogonality property of ¢, (theorem 2.9), we find

R

1
(4.2) lim — [ pla)gs, (@)A(z)dz = 2v,|e(A)]?
R—oo I 0 *
Furthermore
9 = a9 . 2 R 2
43 AP < b= Al= i 7 [ 1rste) - P < 2
q:

where 5, = 0 for ¢ > N. On the other hand

1 R 1 R
7 | U@ = peos, @ A@s = & [0 - PR, R
where A
Jq(Rit) = / Mz, t)éy, (x)A(x)de
1
So using Holder inequality one gets

3 | U@ —peNen, @A P & [ 1B - PP [ R 0P

Assume for a moment that there exists Ry > 0 and K > 0 such that

R
(4.4) %[ 13,(R,t)]?dt < K?, ¥ R> Rg
0
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then, according to (4.1)-(4.4), one gets

R
| 'II?‘L F(x)6x, () A(z)dz — 28, |e(Ag)[ IS €(K + 1+ 2V2]e(A,)[?)

and theorem 4.1 is established. Thus it remains to prove (4.4) which will be provided
in several lemmas.

We first remark that

R R
f Jy(R, t) cos(put)dt =f o, (2)du(x) A(z)dx
0 0

so, by using Fourier-Plancherel formula, we have

1 R . 2 o0 R .
E/u [34(R, 1) dt :ﬁ-/ﬂ |/ﬂ Or,(2)ou(z)A(z)dz|"dp

Thus we have to prove that the right hand side of this equality remains bounded
as R — oo. The first step is the following lemma

Lemma 4.3. For every m > 0, there ts a constant M such that

1 oo R
(45) 2 [ 1] en@su)adstdn < v
m 0
Proof. According to corollary 2.5, |e(u)|=? = O(|u|***') as |A\| — oo. Then for
every m > 0 there exists a constant M > 0 such that

dp

/ l/ 2 (”)¢n{z)A(T)dz|2dﬂ<M/ l/ P (:L)%(-LJA(:.]daFl( e

By using the spectral theorem associated with L(A) [Ca], we have

j | / 65, (2)0u(2) Alz)de P L = o1 ] 83 (2)A(z)dz

le (

therefore we derive

oo R
5 /,,, | /ﬁ 62, (@)ou() Aol < 2L [ 83, (2)A(z)dz

By theorem 2.9, the right hand side of this inequality, and thus the left one,
remains bounded as R — oo. This establishes (4.5). O
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Lemma 4.4. For every m > (), there 1s a constani M such that
L ™. 1= 2
(46) 7 [ 1] en@eu)a@iatan < u
0 0
Proof. An integration by parts shows that

R R
u? f 62, (2)0,(2) Ax)dz = 2 / 62, (2)6,(2)A(z) dz + [61,, 6,](R)
0 0

where [f,g)(z) = A(z)(f'9 — f¢') (z) is the wronskian of f and g.
i) In the case p > 0, (2.6)-(2.7) show that there exists a constant M such that

| (62, 0ul(2) IS M, Vr,pueR

so as R goes to infinity, the left hand side of (4.6) remains bounded if and only if
the same holds for

m R
7L 1] e@e@ae asuta

But since |e(u)|=? =~ u® > M'|u|*,(Ju| — 0), it follows that there exists M such
that

1 R 1 m R . .,
ﬁ/ﬂ [6a, (@) A(2) da > W/o ]/1 6, (2)0u(2)A(z) dz|*|c(p)|*dp
m R
2 i/‘ |] ox, (2)0u(2)A(z) dz|* 1 dp
R 0 1

The left hand side is bounded by theorem (2.9).
ii) In the case p = 0, again (2.6) and (2.7")-(2.7%) show that as R goes to infinity

O(R*-%), ifa#0

YuelR | [(5,\,'4’;1](&) |= { O(lnR/R), ifa=0

and thus
O(R2e-3), ifa#0

1 ™ 2 _
R 1ol = { o

Since —1/2 < a < 1, the right hand is bounded. So, as above, it suffices to prove
that

l m R ,
'k'_/u |/l or,(2)0u(z)A(2) dz |’ du
remains bounded as R goes to infinity. But in the case p = 0, we have |c(u)|* ~

W+ > M'|ud|, (Ju| — 0); then we conclude as in the first case. This concludes
the proof of lemma 4.4 and finishes the proof of theorem 4.2. O
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Proposition 4.5. Le f be an L-a.p. function whose spherical Fourter exponents
and spherical Fourier coefficients are respectively (A,) and (3,). Then for every
s > 0, the spherical Fourier exponents of T*(f) are (X)) and its spherical Fourier
coefficrents are (3,0, (5)).

Proof. Let f € By. By theorem 3.8 the function 7*(f) is in By and
T*(f)(x) = M [¥(s,7)]
Using the dominated convergence theorem and formula (2.17), we obtain

Bnda (s), if A=A, for some n

9 R
I — L] . dt =
n‘_'“mnl FRt) oA {0, if A # A, Vn

which means that the Fourier exponents and the Fourier coefficients of W;(s.) are
respectively (A,) and (8,6, ,(s))- This concludes the proof. O

Compacity property. Let [ & By

f(z) ~ Y Bada,(2)
Then we have
Fy(e)~ 3 Bncoshnz and Wy(s,z)~ ) Buda,(s)cos Az
Let S(f) the set of functions Wy (s,.),s > 0, and their limits in the sense of uniform
convergence on [E.

Proposition 4.6. The famaly {¥;(s,.),s > 0} constitutes a majorisable set.

Proof. We have to show that the functions {¥;(s,.),s > 0} are equally Bohr a.p.
and equally uniformly continuous on . This is a consequence of (3.6) and the fact
that M is bounded by 1 (see (2.18)). O

Proposition 4.7. Let W € By. Then W belongs to S(f) if and only if its Fourier
series has the following form

W(z) ~ ) andy,(sh)cos A

where s}, s such that there exists a sequence (s,,) of strictly positive numbers sat-
1sfying

lim o5, (sm) = ¢a,(s7)

m—00

Proof. The proof is a mimic of Delsarte’s (see p. 304 [ D]). O

Remark 4.8. The proposition means that in the set S(f), the formal convergence
of Fourier series is sufficient to ensure the uniform convergence.
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Proposition 4.9. Let (s,,) a sequence of positive numbers. Then there exists a
subsequence (¥;(s),,.)) uniformly convergent on IE.

Proof. For each fixed integer ¢, the function ¢, takes its values in a finite interval
[0,,]. Thus for every € IR there exists zj € [0, 1] such that

Pa,(2) = 95, (27)

Consider now a sequence (¥ (s,,,.)); to each s, there corresponds Stmq € [0,1,]
such that

é‘\q(sm) = ¢Aq(3;1g}

» T % * 5 * * P .
The sequence (s7,,) contains a convergent subsequence (87,0 let s; be its limit.
Then we have

wy . * . v
¢Av (S!;‘) - mljlﬂ]m qﬁ-\q{squ} . m]j]Elm Qsz\q (SmJ}

Appealing to proposition 4.7, we see that the formal series

Z aqu,\q{s;) cos Ay
defines a function in By which is the uniform limit of the sequence (¥ (s,n,.)). O

Theorem 4.10. Le f € By and (s,,) a sequence of positive numbers. Then the
sequence (T°™ f) contains a subsequence uniformly convergent on .

Proof. Tis is an immediate consequence of the previous proposition and the bound-
edness of the operator M. O

Remark 4.11. This compacity property of the space By is a partial generalisation
of Bochner’s theorem which characterises the space By.

5. THE HILBERT STRUCTURE

In this section we assume also that p > 0 or || < 1/2. Let f be a function in
Byp; that is f = M(Fy) where I'; € By. Let (A,) be its spherical Fourier exponents
and (8,) its spherical Fourier coefficients. We have

Fp(a)~ > BacosAz and f(a)~ Y Bt (2)
The series 5 |3,|* is convergent and we have
9 IE .
(5.1) S8 = Jim = [ 1@ da

but for the series Y |3, |*|c(An)|? this is no longer true. It turns out that the integral

R
7 [ @rae) i

has no limit when R goes to infinity. This leads in turn to the introduction of the
following subspace 1 of By.

First let Bf be the subspace of functions F' € By whose primitives G = f; F(t)dt
are odd and Bohr-almost periodic.
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Definition 5.1. We denote by £ the subspace of functions f € By such that
Fy is in By. For such a function we denote by Gy the primitive of Fy satisfying
Gy(0)=0.

It should be observed that every spherical polynomial belongs to . On the
other hand, if f belongs to $H then so does T* f for every s > 0. Indeed, by (3.8)
we have to prove that W,(s,.) belongs to Bj,. But

/ ‘l,(s.t)dt:%f [Gi(z+ 1)+ Gy(z — 7)]M(s,7)dT
0 0

The right hand side is an odd and Bohr-almost-periodic function since G; is, so
the same is true the left hand side.
Let f €9 and

Fy(z) ~ ) Bacos A,z
then

sin A,z

Gy(z) ~ 32—

and thus the two series

2 18a |*
(5.2) > 18a* and N

are convergent.

Proposition 5.2. Lel [ € 9 whose spherical Fourier series ezpansion s grven
by f(z) ~ 3 Bnda,x. Then the seres 3 |Bn|*[c(Mn)* is convergent.

Proof. Let N; and [Ny be the subsets of N defined by
Ny={neN|A, <1}, No={neN]|A, >1}

Corollary (2.5) shows that ¢(A) is bounded for A > 1, so the series

Z |Bnl?le(An)I?

nelz

is convergent since the first series in (5.2) is. On the other hand, by the same
corollary we know that when A — 0, ¢(A) =~ A=1 if p > 0 and ¢(A) =~ A=(@+3) if
p = 0. Therefore in the two cases, the convergence of the second series in (5.2)

implies that of
> 1BalPle(An)P
neN;

which proves the proposition. O
Remark 5.3. For every A > 0, the function z — v/A¢, is bounded on [0, 00[. Hence

if p is a spherical polynomial (see 3.7) then v/Ap is bounded on [0,00[. We shall
prove this boundedness for every f € 6.



18 GENERALIZED ALMOST PERIODIC FUNCTIONS

Theorem 5.4. For every f € 1 there exists a constant M > 0 such that

(5:3) max |/A@)f(2)] < MIIFllo +1IG |

Proof. Let [ € $1; according to Definition 5.2, we have
T
f(z) = / Fy()M(z,t)dt, with F; € B)
0

Using the Fourier-Plancherel Formula and the representation (2.18) we have

(5.4) fla) = f 3(F;)(\)éa(z) dA
with
(5.5) 3(1’,)(,\;:/0 Fy(t) cos A dt

Integrating (5.5) by parts, one gets
(5.6) F(Fy)(A) = Gy(z)cos Az +/ G(t)Asin At dt
0

There exist non-increasing functions G}" and G7, bounded by ||Gy||o., such that
Gy = G}' — G7 . Inserting this decomposition in (5.6) and using the second mean
theorem, one gets

(5.7) B (F)llee < MIGylloo

Now we write (5.4) in the form

1 o0
\/A(x).f(:J=£ S(Ff)(f\)\/A(x)éx(r)d/\-%jl S(Ep)(A)VA(x)ea(x) dA
=lo+ I

From (2.4) we can assert that there exists a constant M such that

Va2 LYA2 1, [VA(@)éx(x)] < MA(HD)

On the other hand, there exist non-decreasing functions F'}" and F}'. bounded by
|| F7|loc, such that Fy = Ff' — F7 . Then, using again the second mean theorem, we
get

[(F7)(M) < 6]|FyllooA™

so we deduce that

oo -1
68) Ul <OMIFyl [ At Dar=0M (<at3) F/lle
1
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In order to estimate Iy, we have to distinguish the case p > 0 from the case
p=0.
1) If p > 0, according to the remark 2.6 we may assume that
o F
e(A) = 1 +h(})

where vy € R™ and h is a continuous function. Then using (2.20) we have

% - g in At
‘4(r)¢l(:)=2"°smxu+% ] Kp(z, )25 dt+
k3

+b(A)e™** + b(—A)e~* + /W Ko (2.1)[b(A)e™* + b(—A)e~"**] dt

Then an integration over [0, 1] and (2.21) give

1 .
I[ VA(z)éxr(z)dA| < 2IaII/ S]"u‘"d.ul+‘2|=r,ululp b1 + o1(z)e” )+
0 0 A1

M
® ! sin
2ol [ uf-ptx.:)n(j “du) e
T 1] M

It follows that there exists a constant M such that

(5.9) Ve >1, | j | VA@Déa() N < M

Using, once more, the second mean theorem and (5.7) we see that there exists a
constant M such that

(5.10) [lo] < M||Gylleo
The theorem is then a consequence of (5.8) and (5.10).

2) If p = 0 then we have to assume |a| < 1/2. Integrating (2.5) with respect to
A one gets

lfo1 VAo @) dA] < N (~a+ %)1 et [(1 42yt - 1]
< No(1427°F), va>1
Using (5.7) and the above inequality we deduce that
(5.11) ol < MGl

and the theorem is a consequence of (5.8) and (5.11). O

We are now in position to prove the main result of this section.
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Theorem 5.5 (Parseval relation). Let f and g be two functions in $, whose
spherical Fourier sertes expansions are

f(2)~) aués.(2) and g(z)~ ) buo,,(2)
Then the following limit exists and is finite
R
Jim = [ reme)Aw) b
It 1s equal to 0 if f and g have no common spherical Fourter exponents; otherwise

il 1s equal to
> anbale(An)?

where the summation is over their common spherical Fourier exponents. Moreover,
Parseval’s relation holds:

R a
Rlil.‘éo %'[0 |f(z)|2_4{x) dr = Eﬂ: |an’2tc('\u}[2

Proof. 1) We asume that f and g have the same spherical Fourier exponents (A, ).
There is a sequence (P,) of odd trigonometric polynomials which converges to G
uniformly on &, and such that (P)) converges to F; uniformly on B. So for every
€ > 0, there exists ng € N such that

(5.12) n2>ng=>||Gy — Palloc <€ and ||Fy — Pylles <€
We write
N-
P.(z)= z aj cos Ajz
j=1

where A; are among the spherical Fourier exponents of f and we set o] =0, Vj >
N,,. Bessel’s inequali!;y and proposition (5.2) show that the series ZJ- ajbile(A;)]* is
convergent, let S be its value. There is an integer ny, which can be chosen greater
than ng, such that

Nn,
(5.13) 1§ =" a;bile(A)I? I< €
i=1

Using the triangle inequality we have

L & i 1=
a7 [, @@ A@ == 51<l 55 [ U@ - @A) drt
1 R N".
37 [ @) AG) - 3 o Bl 1+

N

1 Nl;
IS aliBleh)I? = 3 alBsle(A)I? | +
i=1 i=1

N.,
1Y alBsle(A)P =S |
j=1
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where we have set .
ot |

Pn(2)= Y a6, (2)
=1

i) Since f and g are in Hi, then appealing to (5.3) and (5.12) we see that there
exists a constant M such that

R
G10) g [ U@ = e @A) dr I M, o + G, )
0

i) Using theorem 2.9 it is easy to see that

N

. l R - B uy _— iz
dim 57 [ o @A)z = 3 o Bl
Thus there is By > 0 such that
]. R N“I
(15) I3 | pa@E@)AEME - ,.;“?'B" le(\)* I<e, VR R

i) We set A = 3" |b;%|e(A;|*. Using Bessel’s inequality, we have that

Nl: Ny N"I
(5.16) | al Bile(A)P = Y afbile(A)[* [< AR(Y lay — o [Ple(A;)[])
i=1 =1 i=1

Now using the classical Parseval’s formula and (5.12) we obtain

L

4G =0 5 . 2 R oo cadBhE -
ZI Aj }-Rll—l:'goR/D iGI("L) Pﬂt{l)l dr < 2¢

i=1

Yoy — o' = lim 'ﬁfn G(2) = Pa (&) dz < 262

i=1

(5.17)

Let Iy and Na be as in the proof of proposition 5.2, corollary (2.5) shows that
there is §; and é, such that

&
Vi €Ny, le(A;)f* <

,\_1 and Yj € Ny, |e(Aj))? < 62
J

thus from (5.17) we deduce

> laj—af [P le(A))* < 26,
JEN,;

3 la; —aft P le(A))]* < 26:¢
JEN2
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Then it follows that
Na,
(5.18) S 1bil L aj — ol [P< 2VA/(6; + b2)e
ji=1
From (5.13), (5.14), (5.15) and (5.18) we obtain for every R > R

1 R
ﬁfg f(2)g(x)A(z)de — S |< e{M (1P lloo + 1Gylleo) + 2 + gm}

2) In the case where f and ¢ have no common spherical Fourier exponents, the
proof is carried out by the same arguments with S =0. O

Concluston. For two functions f and g in H7,, we set

8w L [ ;i
11 = fim 5 [ V@FAG) do
o T P N
(Fl9) = Jim 5z [ f@@)A@) 4o

Then the space $H equipped with the norm ||.||p and the inner product (|) is a
prehilbertian space; the subspace of spherical polynomials is dense in $;. Moreover,
the spherical Fourier series expansion of f € $1 converges to f with respect to |[.||L.
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