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ALMOST PERIODIC FUNCTIO S ASSOCIATED WITH

A SINGULAR DIFFERENTIAL OPERATOR ON (0,00)

HOUCINE CHÉBLI

ABSTRACT. We .i..", II. charll.CteriSll.tion of lI.lmOllt periodic funclion5, lI.MOCiated with
a c1.&M of s.Lngular differemiaJ operaton L 0" (0,00) indudina Beuel a"d Jacobi
ope.ralors, as a closl1re in the sense of wufonn com..,rlenoe of finite &UJll of the fonn
E.. a .. lcp·..W~J.. (~) "'here 'h. an: 5pe(:W ei&enfuncliolll~ of Land C(..\.)i5 the Jou.­
function M50cialed wilh L.

1. INTRODUCTION

Many of t.he ideas and met.hods of dassical Fourier analysis on the real lille have
been int.erest.ing and fruitful when studied in ot.her cont.exts where at. least $Oille of
the useful st.ructures from the dassical case persist,

A particular case is t.he harmonie analysis associated wit.h a Sturm-Liouville
operat.or. In that case, the underlying tool has been the generalized translat.ion
opcrat.ors [C31which have proved useful in specifying the das! of Sturm-Liouville
operators suitable for carrying out the analogy with dassical harmonie analysis.

Here we will direct our attention la generalized almost periodic (g.a.p.) func­
t.ions associat.ed \Vith Sturm-Liouville opcrators. The foregoing way of introducing
the notion of g.a.p. functions goes back to Delsarte [D] and arter him Levitan
[Lev]. However, an important difference between the 1.\\'0 papers strikes the atten­
t.ive reader. While Levitan limits his concern to rcgular Sturm-Liouville operators
and a characterisation of g.a.p. functiotls as a c1os11re, in t.he sense of llniform
convergence on the whole real lille, of finite sum of the form L ul;v(:r,..\d where
v(x, ..\1;) are special eigenfullctions of the Sturm- Liouville operator in consideration,
Delsarte deals lVith ~ spccial but singular differential opera tOI", Ilamcly the Bessel
operator and gives a more complete study of g.a.p. functiolls.

As our approach here is simiJar ta tllat of Delsarle alld in arder la give some
mot.ivations, IVe start with a short dicussioll of Delsarle's resulls.

The general solutions u(x,l) = I(x + t) + y(x - t) of the wave equatioll llu­

!lu = 0 set off the importance of the role of thc motion group on the real hne. ln
parliclllar, if 1 and y are Bohr-almost periodic (B·a.p.) fllllctions sa is t >- u(x,t)
uniformly with respect t.o x. This suggests t.he following generalisation: Let L be a
lincar second order differential operator and let u be the solution of

ô'lu ÔII
L,. - ôt' ~ 0, .(z,O) ~ f(z), a.(z,O) ~ .(1)

1991 M.,4em.t;u Sdjecl Clu~;fic.'iOJl. PrimMY "'lA71>, 47EOI>; Secondary 4'lA 71>, 42ell>.
Ke, IIIIHi., ...i p1","u. Almost-periodic fWlction. singula.r differeulial operator, generalized

translation operator, spe(:tral ll>eQr)', Fourier series expansion.
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L ,,20+1, 0
v = fi + ---v, z>

x
witb -~ < Q < ~. The theory he built is În man)' settings analogous to Bohr's
one. The role of the exponentials is played by the modified Bessel fUllction

. (À ) - 2'qo + 1) J (À) À> 0
Jo Z - (Àz)'" 0' z,

and the motion group is replace<! by the generalized translation operators associated
with the Bessel operator [0). i\loreover Delsarte obtains a compactness property,
series expansions in Lellns of (je> P.I;Z» and prehilbertiall structure in the space of L­
a.p. functions. A fundamental role is played by the Mehler integral representation
of i(>(,h:) in terms of the cosine function IW]. namely

. ( 2r(o + 1) , 1," ,.!J ,Ix) ~ .• (x- - ,-)_. cos Àldl
(> r(~)r(o+ ~)z 0

The transformation operator defined by this formula is ill fact a transmutation
operalor which allows one to sludy the Bessel operator in terms of the simpler
operator ~ and thus the L-a.p. functions in terms of e\·ell B-a.p. functions.
Furthermore, one can derive the orthogonality property of (j<)(>•.t:r:», ~.t > 0 from
that of(cos~.tz). At this stage the Fourier Bessel transform plays a decisive raIe.

ln Lhis paper we will work with differential operators of the form

L(A)u =u" + A'«X» ,/
.4 x

where A will have properties modeled on L(A) being the radial part of the Laplace
Beltrami operator on a non compact riemanniall sYlllmetric space of rank one [H].
The pur pose is two-fold. On one hand, we have the feeling th aL it throws a certain
alllount of light on the results obtained by Delsarte and makcs c1ear what is general
and what is special about the Bessel operator. On the other hand, it leads to set off
two distinct classes of Differentiai operators, one including Bessel operator and the
other one including Jacobi operator, for which the theory can be extended. The
distinction between the two classes is related to the fact that the corresponding
spectral measures have distinct behaviours al the origin ~ = o.

The balance of the article is organized as follows: The next seClion contains sOllle
needed properties ofsolutions of L(A)u-~2u=O. Of particular interest are Integral
represelltations which will be established by the use of Riemann's method. This
enables us lO der ive precise asymplotic behaviour of the lIarish Chandra c funclion
(inlimalely related wilh the JOSl function in scallering theory). In section 3 we
define L(A)-a.p. functions and set down saille of their simple properties. Seclion
" is devoted to the proof of the compactness property and the series expansions of
L(A)-a.p.functiolls. The prehibertiall structure is pro\'ided in section 5.

ACI\NOWLEDGEMENTS. 1 would like to thank profcssor Kenneth A. Ross for
carefully reading and correcling an earlier \'ersion of this paper.

What are the conditions on the data / and 9 in order that t _ u(z, t) he a B-a.p.
fUllction uniformly with respect ta x? ln Lhis case we will say (with Delsarte) that
/ and gare f...-almœt perÎodic (L-a.p.) fUllctÎons.

Delsarte has investigale Lhis question in the particular case ""here Lis the Bessel
operalor
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2. TUE OU'f'ERENTIAI. OPERATOR L(A)

2.1 Definitions and notatiolls. Let L(A) be the dirferential operator defined by

" A'(z),
L(04)u = u + o4(z) u , x>O

where the function A satisfies the following assumptions

(C) A Couvezil, propertg: we assume that A is Îllcreasillg on (0.00), 04(0) =0
and A'/A is decreasing, we then denoLe by 2p iLs Iimit at infinity

2p = lim A'(z)
r-oo A(z)

This hypothesis ensures the positivity of the gelleralized translation operators as~

sociated with L(A) [Cd.

(Ro) Regulanty IR the lleigh60urhood of zero. We assume that A is of the form

1
(t >-­

2

where A. is ail e\'en_Coo functioll and 6.(z) > 0 for .r: > O. 50 without I06S of
gellerality we assume A(O) = 1.

(Roo) Regularity il! the neigh60urhood of IIlfiluly. Two kind of growth properties
are made according as p = 0 or p > O. More precisely lI'e assume

forz -co,
A'(x) _ { 2p + D,(x),
A(z) - 2l>fl + Do(;!;),

if p > 0
if p = O.

where Dp and Do are assumed to satisfy, for any Xo > 0

1~ tID;(tll dt < 00,.. 1~ tID;(t)ldt < 00,.. j=O,j=p

ln the case where p > 0 we will assume, without loss of generaJity, that. A(;I;) ......
e 2pr (z --. (0).

Typical examples are the Bessel and Jacobi operalors for which we have respec­
tively

A(z) = z20+1, 1
0' > -'2' p = 0

A(z) = 22p (cash :.tf/HI (sinh z)20+1 , 1
(t? {J > -'2' p= (o'+{J+ 1) > 0

Wc shall be concerned with the asymptotic behavlour of solutions of the following
dirferential equatioll

(1) L(A)u + p' + p')u =0, À E C
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Assumption (Ro) shows tllat x =0 is a regular singular point for (1); funhermore
(1) has exactly one solution (regular solution), which will be denoted 9>., satisfying

.,(0) = l, .,(0) =0

So, (x,.\) - 9>.(x) is an even function on Q xC, Cao with respect to x and anaJytic
with respect lo.\.

ln order to analyze the beha\'iour of the solutions of (1) near infinity, we observe
that the substitution w = /Au transforms (1) into one of the following equations

(2°)

and

(2')

{

(
0'-1/4 ) ,

w"- x 2 +qo(x) w+.\·w=O

1 1 0'+1/2
qo(x) = 4DJ(x) + "2OO(x) + z Do(z)

{

w" - q,(x)w + ,\'w =0
1, 1

qp(x) = 4D;(x) + "2D~(x) + pDp(z)

if p = 0

if p > 0

Assumptions (Ro) - (Rao) show that 110 is an e\'cn contillllOUS function on lit,
while qp behaves like (O'z - 1/4):r-2 near:r =0 and for allY Xo > O. we have

r~ 'lq;(t)ld' < 00
j ••

j =O,j =p

ln the two cases, olle can uses Langer's result (Lang] to prove the following

Proposition 2.1. There exist two positive COllstants No ulld NI stlch (fiat

(1) r'''I),xl~Nl

(2.3)
VA(x)., = x'+\ [;o('\x) + Orx')]

(VA(x).,(x»)' = (xo+\ ;o('\x»)' + xo+10(l)

(2.4)

(2) For l.\x 1> NI

VA(x)., = xo+ 1;o('\x) + ),-0-1 [';"O( 1) +e-n·O( 1)]

(VA(x).,(x»' = (xo+l;o('\x»)' + ,\_0_\ 1<;"0(1) + ,-n'O(I)]

(3) There e:risls a COlls/allt Nz such thal for aU.\ E C and x? 0

(2.5)



GENERALIZED ALMOST PERIOQIC FUNCTIONS ,
Pmo! Use the method of variation of constants and the behaviour of Bessel func­
tions. For more det.ails one can sec ((C21or (Ti). 0

On the other hand, for an)' À #: 0, cqualion (1) has unique solutions which will
be denoted b;y <llH (scattering solutions), such that when z _ 00

(2.6)
{

IV,(z, A); 1+ o(z-')

W±(z,À) = 0(;1:-1)

For À = 0, the asympl.Otic behaviour is difTerent according as p = 0 or not.
More precisely, equation (2") has two linearly independent solutions, which will be
denoted by VA4l and JÂIV, such that

(2.7)
{

VA(z)"(z) - 1 ; o(z-'), ( VA(z)"(z)J' = 0(>-')
(x - 00)

VA(z)"'(z) =O(z), (VA(Z)"'(Z»)'; 0(1)

whereas equatioll (?I) has two Iinearly independcllt solutions, which we denote
again by VA4l and VAw, whœe behaviours for large x are given by

VA(z)"(z); z·+IW,(z),

(VA(x)"(x)J' ; (a + ~)z·-l Z,(z),

lim W1(z) = 1
<-~

lim ZI(J:) = 1
<-~

(2.7')
lim V2(:r:) = 1, ifa =0
<-~

, {(-a+ ~)x-·-lZ,(x),
(2.7') (VA(x)"'(x)J; ln x

2.jXZ,(z),

lim Z2(X) = l, ifa #: 0
<-~

lim Z3(Z) = l, ifa =0
<-~

The behaviour of the scattering solution <lI,l. for large IÀI both 011 the real axis
and in C· is going to play an important role in the further de\'elopmcnl.. For doing
iL, again wc have to disLinguish the cases p > 0 and p =O.

Proposition 2.2. If p > 0, the" for every z > 0 the /lme/IOII À ...- <ll,l.(z) IS a
holomorphie funetioll il/. pEe 1 9m(À) > O} U11d eOIl/muous for 9m(À) ~ O.
F1lrlhermo~ we have, as 1Àz 1 goes 10 Îrijilllly,

(2.6)
/ A(z)".,(z); ,±u< [1 + O( Alz)]

(/A(z)",,(z))' = ±;A,">< [1 +O(A~)]
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Proof. Combining the equalÎon (2P ) with the boundary condit.ion (2.6), and using
the method of the \'ariation of constants, we obtain the Volterra integral equation

(2.9)

Using the bound

where C is an appropriate con.stant, we see t.hat the method of successive approxi­
mations can be performed lo give the desired result. 0

ln arder lo study the case p =0, we introduce the normaJited Hankel functÎolI

Hil
) being the Hankel function oforder a and orthe first kind. Il has the following

behaviour near the origin and aL infinity

where ln z is Laken to he the brandI on C - illL [WJ. ail that point il is userul to
observe that there is a constant C such that for any :. #- 0 and" > -(1/2)

(2.10) (
11

)
-101+1

IH{I)(:.)1 < C -'- e-II:J:I
o - 1+ jzl

Proposition 2.3. If p =0, thell

(1) fOI- every x > 0 the flllldioll À >- À-!a(À)<lJÀ(x) is a holomOJïl/llc flJ.1lctioll
il! P E II':: 19(À) > 0) and COlltillllOUS for ~P) ?: 0 where a(À) is defilled
by

a(A)={A
O

, ifa"O
(hd)-l, 1[0=0

(2) For each À#-O with 9À ?: 0, x>- x-!a(x)JA(z)<lJA(Z) IS a cOlltinuous
fllJ1CtiOll fOI' x ?: O.

(3) For À E C, with ~À ?: 0, we have the bOlmds

(2.11)
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Proof. Combining t.he equat.ioll (2°) wit.h the boundary condition (2.6), and using
the method of the variation of constants, we obtain the Volterra integral equation

where C>. is given by

From the inequality (2.10) we der ive for:z: ~ l the folJowing bound

where C is an appropriate constant: we see again that the method of successive
approximations can be performecl t.o give the desirecl results. 0

Remark 2.4. Il. shou\d be noted that the bound (2.13) gives us

(2.14)

So (2.8) holds in the two cases p > 0 and p =O.
$>. and 4J_>. are two lilleal"ly independent solutions of (1), 50 tP>. is a linear

combination of both
tP), = e(.~)<I>), + e(~-\)<I>_.I.

Using (2.7) and the fact that the wronskian (<I>.I.' <1>_),] is independent of the variable
:z:, we have

From the ahovc two propositions wc c1erivc the asymptotic behaviour of the e
function

Corollary 2.5. /11 the case p = 0 the [unelion -\ ...... a(-\)-\!e(-\) is eOlttilwO'US 011
p. E C 1~m(-\) ::; O} whereas in the case p > 0, -\ ...... -\c(-\) is contill1l0US 011
P E iC l "",(.\)'; Ol·
/11 both cases c(-\)-1 behaves like -\o+t as 1-\1 gaes ta infinity.

Thus the most important difference between p > 0 and p = 0 is thaL Lhe function
c has distinct behaviours al. O, However il. has the same behaviour aL infinity in
both cases, p = 0 and p > O.

Remar!' 2.6. ln the case p > 0 the function -\ ...... -\c(-\) vanishes al. -\ = 0 on\y if.po
and 4>0 are \inearly dependellt. In this easc the funetion c is continuous Oll IR and
the functioll x ...... JA(x).po(x) is boullded on [0,00[. Henee iL folJows that there
exists a constant M sueh that

(2.15)
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(2.17)

O~herwise ~bere exists 'Y #- 0 and a continuous function Il on IR. such 1.hat.

(2.16) c(À) = ~ + h(À) and ).4(r)';a(r) =O(r), (r - 00)

RemarJ.: 2.7. The function c is known as the lIatish Chaudea c·function. Clearly
il. plays a very fundamental role for the operalor L(A); indeed IC(À)J-? represents
the densit), of the spectral measure of L(A) realized as an unbounded self adjoint
operator in the Hilbert space L2(A(x)) of square integrable functions on (0,00)
with respect t.o A(z)d:r: (sec (C3]).

2.2 Product formula and intcgral representatiolls. Il has been shawn in (Cd
(see also [C3J) that., under the collvcxity propetty (C) (which we have Ilot use<! .rel.)

(1) Product formula. For c\"cry % #: 0, y :f 0 there exists a lion negative en~1I

and continuous kernel z - T(z,y,z) supporte<! in (Ix - yl,x + yI whose
integral with respect to the measure A(.:)d.: is less than or equal to one aud
such that.

1
'+,

.;,(r)';,(.) = .,(,)T(r,.").4(,)d,, VÀ E C
1&-,1

(2)

(2.18)

(2.19)

Mehla npreselllatîon. For cvcr)' x #- 0, therc cxist.s a non llegative even
kcrnel z ..... M(x,.:) supported in (-x,x) such that

1& M(x,z)dz SI and lfi,\(x) =1& cos~zM(.r;,z)dz, "I~ E C

(2.5) shows t.hat. z ..... 9'\(x) is bounded for every complexe" such that.
IÙ""I < p; then using (2.17) we sec that.

I.,(r) 1~ l, VÀ E C, 1nm(,l) I~ p

I.,(r) 1~I.o(r) I~ 1, VÀ E III

(2.21)

ln [C-F-II] one cali find another integral rcpresentat.ion of Sonille type for tP,\ but
we do not dÎscuss this question herc. Howcver, we are illteresled În an inlegral
represenlat.ion of <P,\. In thc case p > 0, we can apply a convcnient Marchenko's
procedure [A-M] 1.0 derive the following

Proposition 2.8. Assume Iltat p > 0; theu fOI" every C01ltl/lex À with Ù"m(À ?: 0)
tlte soll/lion <11,\ has the lorm

(2.20) JA(x)(ll.\(x) =ei '\& +100

/{p(x,l)ei.\ldt, x> 0

when the kef·llet J(ptz,t), defilled 101·0 < z S t, lias cOfltilll/Ol/$ pal"llal derlVa/tlJes
and satisfies

1 z+t 100

1/(,(x,I)1 S f'o(-2-)e ll '(<t">, & 1/<,(x,I)ldl::; O"\(x)e"l(t:)

100 ôf( 1 ,
& lat(x,t)ldt S 2UO(X) + uo(x)u\(x)e{.lt)

Inddcntally, this yiclds a nc\\' praof of proposition 2.2 whcn p > o. Ullfort.u­
natcly, wc cannot. apply Marchcnko's met.hod in t.he case where p = 0 because of
t.he slow decay of the function 90. III order to address this difficult.y Riemann's
method seems to he the mest promising way, but we need more hypot.heses than
(R.x.); we refer to ( [ü-M)), for further details.
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2.3 Ol'thogonality pl'opel'ty of ,p),. We are going to show th aL Lhe regular so­
lution rP)" satisfy for" > 0, an orthogonality property analogous ta Lhat satisfyed
by circular functions. More precisely, we have

Thcol'em 2.9. For every " > 0 aud Il- > 0

11R
{ 21,(-1)1',lirn -n 1>),(x),p/,(x)A(x)dx =

R_oo 0 0,

Praof. We have

if"=JJ
if" t- JI.

Thus, the l'roof is an immediate consequence of (2.8) or (2.14). 0

Remark 2.10. The asymptotic behaviour of,p), and 1>0 show that in general

~lR q»,(x),po(x)A(x)dx, ,,> 0

has no limit when R - 00, whilst the limit

11R

lim - ,pij(x)A(x)dx
R_oo R 0

is equal to infinity. Indeed, this is the case for the Bessel operator (A(x) = X:?O+l)

or the Jacobi opera tOI" (A(x) = sinh 20+ 1(x).

3. L-AL/o.WST PERIOOIC FUNCTIONS

3.1 The opel'at01'8 A1 and (T"), s:::: O. Let C. be the space of even and contill­
uous fuuctions ail IR endowed with the uniform norm Il.1100' Having in mind the
product formula (2.17) and the J\'lehler representation (2.18) for ,p)" we define the
operators T'and A1 for every f E C. by

(3.1 )

(3.2)

1
,+·

T' J(x) = J(,)T(x",,)A(,)d, and
l:t-,I

'" If( )1- M(f)() {Jo' J(T)M!x,T)dT,
):t T = X = f(O),

rD = Id

if x> 0

if x =0

Proposition 3.L Tile opemlors)\11 alld (T'), s :::: 0, IIrt linear Illld continuons
from C. ùllo itself und fa" UllY f E C.

(3.3)

Praof. That Mf E C. and T' f E C. for every f E C. is a consequence of (D-L]
(pp 62-64), see also [Tr]. The inequalities (3.3) are a consequence of (2.17) and
(2.18). 0
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llemark 3.2. We point out that M intertwines the differential operators L(A) + p'.!
and the second differentiation operator D'.!, that is

(3.4) (L(A) + p')M =AW'

On the other hand the prodllct formula (2.17) for !/J>, can be connected to that
of cosine function, via the operator A1, namely for every >. > 0

(3.5)

where M. acts with respect to v and A{" acts with respect ta r.

3.2 The space 6 L • Having in mine! remark 2.10, we introduce the space Bo of
even Bohr almost perioe!ic fundions P whose means are equal to 0

lim rR

F(x)dx =0
R_oo Jo

The Fourier exponents of such fllnclions are thus strictly positive.
Let 6 L be the image of 6 0 under the operator;\.1

IE6L = 3},E6o l/=M(f,i

Definition 3.3. A function f is sa id to be L-almost periodic tL-a.p.) if il beJongs
to BL.

Le f E C. be such that f = M(FJ ) \Vith FJ E C. and introduce the fUlictioll

(3.6)

the operator ;\.1 acting on the variable T.

Proposition 3.4. The fUlIctioll FJ befongs /0 Bo lj aud onfy iftlte func/ioll \li J(x,,)
does, uniformly with respect to x.

Proof. Il is clear that if 'l'J(x,.) belongs ta Eo, uniformly with respect to x, 50

does FJ(t) = 'l' J(O, t). Assume no\\' that FJ E 6 0. Since M is a bounded operatol",
the fUllction t ....... \IIJ(x,t) is an cven Bohr almost periodic function uniformly \Vith
respect to x; moreover, the relation

~1" ~J(x,t)dt =~ [ (~1"[FJ(t + T) + FJ(t - T)]dt) M(X,T)dT

shows that the mean of \II J(x,.) is equal ta O. 0

RwtO,'k 3.5. Using (3.4) one ean prove that >JI J is a distribution solution of the
Cauchy problem

50 proposition 3.4 says that f belollgs to EL if and only if the distribution solution
of the above Cauchy problem is B.a.p in the variable t and uniformly with respect
to x, the mean of which is equal Lo O.
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EXRmpie 3.6. Every funcLioll p of the form

"

(3.7) p(.) = L P,9,.{'), P, E C, À, > 0
.. =>,

is L-a.p. and we have p = M(Pp ) where

,
Pp(z) = L P.. cos(.\.. z)

..=1

Definition 3.7. A spherical polynomial is any function of the form (3.7).

Theol'em 3.8. Lei j he Il junctlOll beloll91J19 10 BL' Theil

(1) For everg ( > 0 thert: eJ:lsts a spherrcaJ poiglllHrllaJ psud that II/-plloo :s l.

(2) For everg s 2: 0, r(f) hdoll9S 10 BL and

(3.8) 7"(1)(.) = M.[" ,(s, T»)

Proof. (1) Since 1 E BL. there exists FJ E Bo such that 1 = M(FJ ). Thus there
exists a trigonometrical polynomial P without constant term such that

LeI. p = M( Pl; this is a spherical polynomial alld we have

II/ - pll= S IIF, - PII~ S ,

(2) Let p = M(P) be a spherical polynomial. Using (3.7) we get

T'(p)(.) = M.[",(s, T)I

Then assertion (1) and the bOllndedne5S of 1" and M show that

Y/ E HL, T'(I)(.) = M.[",(S,T)]

Assertion (2) is thus a consequence of proposition 3.4. 0

4. SPHERICAL POURIER SERJE:S E:XPANSIONS AND

COMPACITY l'ROPERTY OF L-A.P.FUNCTIONS

Sphcrical Fourie.. sel"ies expansiolls. Let f he ail L-a.p. fllnction; that is
1 = M(FJ) where FJ E 60. Let (.\,,) be the Fourier exponents of F, and (,6,,) be
ils Fourier coefficients. Wc have the dassical relations

According to the usual conventions, L P" cos .\"z is calle<! the Fourier series of F,
and we write

FJ ...... L P.. cos.\".t
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Definition 4.1. Wc will say that (>.,,) and (P,,) arc respectively sphcrical Fourier
cxponcnts and spherical Fourier coefficients of J and we write

This defillition is justificd by the following

Theorem 4.2 (The mean-value thcorcm). Assume p > a or p = 0 and -~ <
cr < 1. Let f be an L-a.JI. fune/ion whose spherical Fourier expoJlwls (md spher;cal
Fourier coefficiwts (In: resJlectively (À,,) and (fin). Theil for e1Jery À > 0

. 21" {2Polc(À")I',hm -R f(x),p),(x)A(x)dx =
R_oo 0 0,

if'\ = Àn /01' sorne 11

if À "# À t " TIn

Proo/. Sînce Fj is in 60, for every ( > 0 there exisLs a trigonometric cosine poly­

nomial, without constant term P = L~=lln COS(À"x) slieh that

(4.1)

Let p = A-i(P), lIsing the orthogonality property of tP).. (thcorem 2.9), we find

(4.2)

Furthermore

(4.3)

where "fq = 0 for q > N. On the other hand

1 rR
1 rR

"R Jo [f(x) - p(x)]''',(x)A(x)dx ~ "R Jo [F/(') - P(')]J,(R, t)dt

where
R

J,(R,t) ~ j M(x,t)",,(x)A(x)dx

So using Holder Înequalîty Olle gets

1 rR
1 r" 1 rR

1RJo If(x) -,,(x)hh,(x)A(x)dx l'~ "RJo IF/(t)- P(t)I'dt."RJo IJ,(R,t)l'dt

Assume for a moment. t.hat. t.here exists ~ > 0 and J( > 0 sueh that

(4.4)
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then, according to (4,1)-(4.4), one gels

1 1."1R 0 f(x).,.(x)A(x)dx - 2P,IcP,)I' I~ «K + 1+2)21«',)1')

13

and theorem 4.1 is established. Thus it remains to prove (4.4) which will be provided
in several lemmas.

We first remark that

lR J,(R,t}cos(pt)dt =lR fÀ.(z)~,.(z}A(z)dz

so, by using Fourier-Plancherel formula, we ha\'e

1 1." 2 1.N 1."li 0 IJ,(R,tll'dt = .R 0 1 0 .,.(x)O,(x)A(z)dxl'dp

Thus we have to prove t.hat the right hand side of this equalit.y rcmains boullded
as R - 00, The first step is the following lemma

LemlUu 4.3. Far tlJtry Hl > 0, thert IS a corlStarll M such that

(4.5) 1 lN 1."R 1 O,.(x)",(x)A(x)dxl'd" ~ M
m 0

Prao/. According to corollaty 2.5, Ic(p)I-1 = O(lIIj2o+l) as 1..\1 - 00. Then fot
every m > 0 there exists a constant Al > 0 such that

lN1." lN 1." d1 O,.(x)O,(x)A(x)dxl'dp ~ M 1 o,.(x).,(x)A(x)d'I'1 (")1'
... 0 ln 0 Cil

By using the spectral theorem associated with L(A) [C:.d, we have

1.
N 1." dp 1"l ",.(x).,(x)A1x)dxl'------1( )1' =2. 0; (x)A(x)dx
00 Cil· o·

thercfore we dcrive

By theorem 2.9, the right hand side of this inequality, and thus the left one,
remains bounded as R - 00. This establishes (4.5), 0
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Lemma 4.4. For every ni > 0, there IS a cOllslant M such thai

(4.6)

Proof An integration by parts shows that

p2LR

?),,(z)ÇI~(z)A(z)dz:=..\;LR

?),,(z)9~(z)A(z)dz + 1?)",ê~](R)

where [/,9](Z):= A(z)(f'9 - 19')(z) is the wronskian of 1 and g.
i) ln the case p > 0, (2.6)-(2.7) show that there exists a constant M such that

50 as R goes ta illfiniLY, the left hand side of (4.6) remains bounded if and only if
the same holds for

But s'nce IC(J.I)I- 2 :::: J.l2 ~ M'IJ'14 , (IJ.1I -.. 0), it follows lhat Lhere exists AI suc.h
that

The left hand side is bounded by theorem (2.9).
ii) ln the case p:= 0, again (2.6) and (2.7 1)_(2.74 ) show that as n goes to infinity

ifCl"::f.O

if 0" ::;: 0

and th us

Silice -1/2 < 0" < l, the right hand is bounded. 50, as above, it suffites to prove
that

~ lm 11R
ê),,(Z)f~(z)A(z) dxfp 4 dl'

remains bounded as R goes to infinity. But in the case p;; 0, wc ha\'e Ic(p)I-2 ::::
·p20+1 ~ M'lp4 1,(lJ.lI- 0); thcn we conclude as in the first case. This concludes
Lhc proof of lemma 4.4 and finishes Lhe proof of theorem 4.2. 0
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Pl"Opo:;:itioll 4.5. Le / be ail L-n.p. /UIICholl whou spflf:rrcal Founu erptmell/.$
and spherrco.{ Fourier coefficletlls a~ ,"es~dllJdy (À,,) alld (fJ,,), TheIl for every
s> 0, the spherrca{ Fourier erpollents ofT·(f) are (..\,,) alld 1/.$ sphencal Fourrer
coefficlenls are (fJ"ç;).~(s)).

Proof. Let. f E EL, By tbeorem 3.8 the fUllction T·(f) is in BL and

Using the dominaled convergence theorem and formula (2.17), we obtain

" 21." {l1n9)..(s), if À = À" for some Il
I:.m -R \IIf(s, t) cos Àt dt = 0 "r' 4' '"'

R 00 0 ,1 .... r .... n' vII

which means that. the Fourier exponenLS and Lhe ~ourier coefficienls of Wf(s.) are
respectively (À n) and (fJnç)).~(8)). This condudes the proof. 0

Compacity pl"Opel·ty. Let f E EL

Then we have

Let SU) the set of functiolls \11 f(s, .),s ~ 0, and their limits in the sense of Ulliform
cOllvergeuce on IR,

Pl'opositioll 4.6. The family {IV f(s, .), s ? O} cOllslil!lles Il majorÎllllble sel.

Prao/. We have to show that the functiolls {w f(s, ,), s ? O} are e<lually Bohr a.p.
and equally uniformly continuQus Oll IR. This is a consequence of (3.6) and the fact
that Mis bounded by 1 (see (2.18»). 0

Pl'oposition 4.7. Lel IV E Bo. TheJt \JI belollgs la SU) if Qlld ouly If ils Fourier
series has Ihe followillg form

where 5;, 18 such that (here exis1s a sequence (5",) of sll'Iclly posltllJe Ilumbers sal­
I$fyiug

Proof The proor is a mimic of Delsarte's (see p. 304 1DJ). 0

RemarL' 4,8, The proposition Illeans that in the set SU), the formai convergence
of Fourier series is sufficient to ensure the uniform convergence.
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Proposition 4.9. Let (s",) a sequence of positive Iwmbel's. Theil /here exists a
subsequence (\I!J(S~" .) uniformly convergell/ on R.
Proof. For each fixed inleger q, lhe funclioll rPÀ q takcs its values in a finite illterval
[0, vq ]. Thus for every x E IR there exists x; E [0, vq ] such tbat

Consider now a sequence (\II J(s"" .)); to each Sm there corresponds S~,q E [0, vq]
sucb that

The sequence (s;"q) contains a convergent subsequence (5;")9); lel s; be ils limit.
Then we bave

Appealing to proposition 4.7, we see that the formai series

defines a function in aL which is the uniform Iimit of the sequence (>JI J(sm, .)). 0

Them"em 4.10. Le f E aL alld (s",) a sequence of positive lIulIlbers. TheIl the
sequence (T'm 1) cOII/oius a subsequence lmiformly convergent 011 R.
Proof. Tis is an immediate consequence of the previous proposition and tbe bound­
edness of the operator J\;f. 0

Rema,·k 4.11. This compacity property of the space aL is a partial generalisatioll
of Bochner's theorem which characterises thc spacc 60.

5. "fHE HILB811T STRUCTURE

In this section we assume also tbat p > 0 or 10'1 < 1/2. Let f be a function in
13L ; that is f = M(FJ ) where FJ E 130 . Let (>',,) he ils spherical Pourier exponents
and (/3,,) its spherical Fourier coefficients. We have

The series L: 1/3" 12 is convergent and we have

"'I~"I'= hm ~ {"lFr(')I''''
~ R-oo R Jo

but for the series L: I.e" i2 Ic(>'"W this is no longer truc. [t turns out that the inlegral

11R

- If(x)l' A(x) dx
R 0

has no limit when R gocs to infillity. This leads in turn to the introduction of the
following subspace f'JL of HL"

First let Sb he the subspacc of functions F E 60 whose primitives G =Jo" F(t)dt
are odd and Bohr-almost periodic.
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Definition 5.1. We denote by )) L the subspace of functions / E BL such that
FI is in Bo. For such a functÎolI we denote by CI the primitive of FI satisfying
CJ(O) = O.

It should he observed "ha" every spherical polynomial belongs to ))L. On the
other hand, if / belongs tO))L then 50 does T$/ for every s 2: O. Indeed, by (3.8)
we have to prove t!lat w/(s,.) belongs to Bo. BuL

The right hand side is an odd and Bohr-almost-periodic function since GJ IS, so
the same is true the left hand side.

Let / E))L and

then

( "P sin À"x
GJx) ..... ~" À"

and thus the two series

(5.2)

are convergent.

Pl'oposition &.2. Let f E f)L whose spherico/ FOlmer sC"ics CX/JallSIOU IS gluell

by /(x) ..... 'iE.!3,,';'>.. x. Theil the series L IP"F"lcP"W IS COllve'rleut.

Praof. Let NI and f;Jz be "he subsets of N defined by

Nt ={IlENIÀ,,~ l}, N2 ={IlENIÀ" > I}

Corollary (2.5) shows tbat c(À) is bOlillded for À > l,50 the series

L IP"I'loP,,)I'
"E Nl

is convergent since the tîrst series in (5.2) is. 011 the other hand, by the same
coroUary we know that when ,\ - 0, c(À)::::: ,\_1 if p > 0 and c(À) ::::: ,\-{..+~) if
p = O. Therefore in the two cases, the convergence of the second serÎes in (5.2)
implies that of

L IP"I'Io(-'")I'
"EN,

which proves the proposition. 0

Remar!: 5.3. For every À > 0, the function x - .fA9J. is bounded on (0,00(. Hence
if pis a spherical polynomial (sec 3.7) then .fAp is bounded on [O,oo{. We shaH
prove this boundedncss for every / E f)L.
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Theol"CIll 5.4. For every / E f)L there erlSls li cOllslalll AI > 0 sud thal

(5.3)

Proof. Let f E f)t,; according to Definition 5.2, wc ha\'e

fez) = 1" Fj(t)M(:I:,L)dt, with FJ E b~

Using the Fourier-Plancherel Formula and the represent.atioll (2.18) I\"C have

(5.4)

with

(5.5)

Inlegrating (5.5) by parts, one gels

(5.6)

There exist Ilon-increasing functions Gj and Cl' bounded by llG,l1oo. such that

GJ = Gj - Cï. Inserting this decomposition in (5.6) and usillg the second me31l

theorem, one gels

(5.7)

No\\' wc write (5.4) in the form

jA(z)/(z) = l3(FJ)(À)jA(Z)~,(Z)dA+ J.ro 3(FJ)(À)jA(z)~,(z)dÀ

= 10 + 10)

From (2.4) we can assert that there exists a constant M 5uch tlmt

On the other hand, there exiSl non-decreasillg functions FI and FJ-, bounded by

IIF/lleol 5uch that FI = F! - FJ-. Theil, using agaîn the second mean theorem, we

g"

50 we deduce that
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ln order to estimate 1o, we have lo distinguish the <:ase p > 0 from th~ <:ase

p= Q.

1) If P > 0, accordillg te t!Je remark 2.6 we Illay assume ..ha"

where'Y E IR· and h is a cOlltilluous function. Then using (2.20) we ha\'e

~ sin ~x I.N sin ~t
V A(Z)9>.(z) = 2;a-,\- + 2ia ~ l<p(z, t)-,\- dt+

+ b(~)eiÀL + b(_~)e-i>'~ +100

Kp(z,t)lb(~)e'>'~+ b( _~)e-i>'.I:] dt

Then an integra..ion o\'er (0, 1] and (2.21) give

Il. fol1ows that there cxists a constant Ai such ..hat

(5.9)

Using, once more, the second mean theorem and (5.7) we see lh"t there exists a
constant M such that

(5. J0)

The theorem is lhen a consequence of (5.8) and (5.10).
2) If p = 0 then we have to assume 10'1 < 1(2. Integrating (2.5) with respect la

~ one gets

Using (5.7) and the abo\'e inequality we deduce thM

(5.11 )

and the theorem is a consequence of(5.8) and (5.11). 0

We arc now in position lO prove the main result of this section.
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Them'cm 5.5 (Pal'seval relation). Let / alld 9 he Iv.:o fUlletrons HI SJL, whose
sphencal Fourier senes erpanSIOIIS ore

f(x) - Lo..9À.(r) a"d g(:I:)"'" L>n9..~(X)
Theil the /ollou:llIg /",,,t auts ond fS ji,lite

lim ...!... J.R /(x)g(x)A(z) dx
R_oo R 0

/1 is tquollo 0 .f f alld 9 nOI:t: no common spllericai Fourrer u:p<Hle"t.s; otherwlSt!
il fS equal to

where the summoholl rs ove,. thel" commaR spnericaf Founer expollerlls. Moreover,
Parser;ol'$ rclaholl holds:

1 J.R ~
lim -Ii If(')I'A(.)d. = Lla.l'le(A.lI'

R_oo 0 0

Prao! 1) We asume that / and 9 have the same spherical Fourier eXpOllents p.,,).
There is a sequence (P,,) of odd trigonometric polynomials which corwerges to G'J
uniformly 011 ]R, and Bueh that (P:,) collverges ta FI uniformlyon R. 50 for every
( > 0, there exisls no E N such that

(5.12)

(5.13)

We wrile
N.

P;'(z) = 2:>"; cœ Àjz
j=1

where Àj are among the spherîcal Fourier exponents of f and we set Cr; = 0, vj>
N... Bessel's inequalily and proposition (5.2) show that the series Lj (Ijbj IC{Àj W is
convergent, let S be its value. There is an inLeger ni, II'hich can be chosen greater
than "0, such that

N ft ]

15- L ajbjl'(Àj)l' Is <
j=l

Using the triangle inequality wc have

12~ /,R f(.)g(.)A(.)d. - 5 1si 2~ /,RII(X) - P.,(.)]g(.)A(.)dx+

R N.,

12~ J. P" (x)g(.)A(.)d, - LoI' bj le(À, )1' 1+
o j=1

N.] N.]

1L ol'bj Ic(Ajli' - L a;"bjle(À,)I'1 +
j=1 j=1

N.,
1L aj'bile(Ajll' - 5 1

j=1
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whcre we have set
N.,

Pn,(;t) = L O;'9A,(;t)
j~1

"

il 5ince 1 and 9 are in SlL. then appealing lo (5.3) and (5.12) we see that thcre
exists a constant M such that

(5.1'1)

ii) sing theorem 2.9 it is cas)' lO see thal.

Thus there is Ro > 0 such that

R N~I

(6.16) 12~J, Pn,(z)g(z)A(z)dz- r;oï'b;le(A;)I' I~', VR?II{,

N~, N., N~,

(5.16) 1I>ï'b;le(A; )1' - L::aï'b; lep; )1' I~ "IlL la; - a;" l'Ie(A; )l'I!
j=1 j=1 j=1

Now using the c1assical Parscval's formula and (5.12) we obtain

(5.17)

Let NI and N2 be as in the proof of proposition 5.2, corollary (2.5) shows that
there is 61 and 62 such that

thus from (5.17) we deduce

L 1aJ - aj' 12 IC(Àj)I' $ 26,f'
JEN2
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'l'hen it follow$ that

(5.18)
N~l

Llb;II";
j=1

From (5.13), (5.14), (5.15) and (5.18) wc ob tain for every n> Ro

12~;,n !(x)g(x)A(x)dx - SIs ,{M (IIF,lb + IIG,lIoo) + 2 +2Jil(o, + O,)}

2) ln the case where f aile! 9 have no commall spherical Fourier exponcnts, the
proof is carried out by the same arguments ll'ith S =O. 0

Conclusion. For two fUllctions f and 9 in 5)/., we set

1 ;,nIl!1I1 = lim 2R 1!(x)I'A(x)dx
R_oo 0

1 ;,n(J 1 g) = lim - f(x)g(:t)A(x)dx
1/_00 2R 0

Then the space 5)L equipped with the norm Il.IIL and the inner producL ()) is a
prehilbertian space; the subspace of sphericaJ polynomîals is dense in S) L. l\'loreover,
the spherical Fourier series expansion of f E nt converges to f with respect to II·IIL.
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